Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Pesticide Formulation and Delivery Systems: 33rd Volume, “Sustainability: Contributions from Formulation Technology”
By
Carmine Sesa
Carmine Sesa
Editor
Search for other works by this author on:
ISBN:
978-0-8031-7578-5
No. of Pages:
196
Publisher:
ASTM International
Publication date:
2014

Droplet size is critical in maximizing pesticide efficacy and mitigating off-target movement. The correct selection and adjustment of nozzles and application equipment, as well as the use of adjuvants, can aid in this process. However, in aerial applications air shear tends to be the dominant factor influencing spray droplet size. The objective of this work was to take a step-wise approach to examine the influence of both adjuvant type and airspeed on droplet size in the presence of a formulated glyphosate product. Although the results show that the spray adjuvants tested did play a role in determining droplet size, as airspeed increased the differences between droplet sizes resulting from the use of the adjuvants tested decreased. A number of the adjuvant–nozzle–airspeed combinations tested did not necessarily increase droplet size or reduce fines, but this does not indicate that they do not have a place in aerial application. Other benefits that could not be measured as part of this study, such as retention and reduced evaporation, can also be critical to an application's success. For any pesticide application, applicators should read and follow product label instructions while being cognizant that the decisions they make, whether they are about nozzle selection or products, will affect droplet size.

1.
Hewitt
,
A. J.
, “
Development of the Spray Drift Task Force Database for Aerial Applications
,”
Envir. Toxicol. Chem.
, Vol.
21
, No.
1
,
2002
, pp. 648–658.
2.
Esterly
,
D. M.
, “
Neural Network Analysis of Spray Drift Task Force DROPKICK IITM
,”
Proceedings of the ASAE
,
Orlando, FL
, July 11–16,
1998
, ASABE, St. Joseph, MI.
3.
Hermansky
,
C.
, “
A Regression Model for Estimating Spray Quality from Nozzle, Application Physical Property Data
,”
Proceedings of the ILASS-Americas
,
Sacramento, CA
, May 17–20,
1998
, ILASS, Pittsburgh, PA, pp. 60–64.
4.
Kirk
,
I. W.
, “
Measurement and Prediction of Atomization Parameters from Fixed-Wing Aircraft Spray Nozzles
,”
Trans. ASABE
, Vol.
50
, No.
3
,
2007
, pp. 693–703.
5.
Akesson
,
N. B.
and
Gibbs
,
R. E.
, “
Pesticide Drop Size as a Function of Spray Atomizers and Liquid Formulations
,”
Formulations and Application Systems: 10th Volume, ASTM STP 1078
,
Bode
L. E.
,
Hazen
J. L.
, and
Chasin
D. G.
, Eds.,
ASTM International
,
Philadelphia
,
1990
, pp. 170–183.
6.
Bouse
,
L. F.
, “
Effect of Nozzle Type and Operation on Spray Droplet Size
,”
Trans. ASABE
, Vol.
37
, No.
5
,
1994
, pp. 1389–1400.
7.
Yates
,
W. E.
,
Cowden
,
R. E.
, and
Akesson
,
N. B.
, “
Drop Size Spectra from Nozzles in High-Speed Airstreams
,”
Trans. ASABE
, Vol.
30
, No.
2
,
1985
, pp. 405–410.
8.
Yates
,
W. E.
,
Cowden
,
R. E.
, and
Akesson
,
N. B.
, “
Nozzle Orientation, Air Speed and Spray Formulation Effects on Drop Size Spectrums
,”
Trans. ASABE
, Vol.
26
, No.
6
,
1983
, pp. 1638–1643.
9.
Teske
,
M. E.
,
Thistle
,
H. W.
,
Hewitt
,
I. W.
,
Kirk
,
I. W.
,
Dexter
,
R. W.
, and
Ghent
,
J. H.
, “
Rotary Atomizer Drop Size Distribution Database
,”
Trans. ASABE
, Vol.
48
, No.
3
,
2005
, pp. 917–921.
10.
Kirk
,
I. W.
, “
Aerial Spray Drift from Different Formulations of Glyphosate
,”
Trans. ASABE
, Vol.
43
, No.
3
,
2005
, pp. 555–559.
11.
Spanoghe
,
P.
,
Schampheleire
,
M. D.
,
Van der Meeren
,
P.
, and
Steurbaut
,
W.
, “
Review: Influence of Agricultural Adjuvants on Droplet Spectra
,”
Pest Manage. Sci.
, Vol.
63
, No.
1
,
2007
, pp. 4–16.
12.
Hewitt
,
A. J.
, “
Spray Optimization through Application and Liquid Physical Property Variables—I
,”
Environmentalist
, Vol.
28
, No.
1
,
2008
, pp. 25–30.
13.
Sanderson
,
R.
,
Hewitt
,
A. J.
,
Huddleston
,
E. W.
, and
Ross
,
J. B.
, “
Relative Drift Potential and Droplet Size Spectra of Aerially Applied Propanil Formulations
,”
Crop Protection
, Vol.
16
, No.
8
,
1997
, pp. 717–721.
14.
Hoffmann
,
W. C.
,
Hewitt
,
A. J.
,
Ross
,
J. B.
,
Bagley
,
W. E.
,
Martin
,
D. E.
, and
Fritz
,
B. K.
, “
Spray Adjuvant Effects on Droplet Size Spectra Measured by Three Laser-based Systems in a High Speed Wind Tunnel
,”
J. ASTM Int.
, Vol.
5
, No.
6
,
2008
, pp. 1–12.
15.
Hall
,
F. R.
,
Chapple
,
A. C.
,
Downer
,
R. A.
,
Kirchner
,
L. M.
, and
Thackner
,
J. R. M.
, “
Pesticide Application as Affected by Spray Modifiers
,”
Pestic. Sci.
, Vol.
38
, No.
1
,
1993
, pp. 123–133.
16.
Lan
,
Y.
,
Hoffmann
,
W. C.
,
Fritz
,
B. K.
,
Martin
,
D. E.
, and
Lopez
,
J. D.
, “
Spray Drift Mitigation With Spray Mix Adjuvants
,”
Appl. Eng. Agric.
, Vol.
24
, No.
1
,
2008
, pp. 5–10.
17.
Teske
,
M. E.
,
Thistle
,
H. W.
,
Hewitt
,
I. W.
,
Kirk
,
I. W.
,
Dexter
,
R. W.
, and
Ghent
,
J. H.
, “
Rotary Atomizer Drop Size Distribution Database
,”
Trans. ASABE
, Vol.
48
, No.
3
,
2005
, pp. 917–921.
18.
Skyler
,
P. J.
and
Barry
,
J. W.
, “
Compendium of Drop Size Spectra Compiled from Wind Tunnel Tests
,”
Report No. FPM 90-9
,
USDA Forest Service
,
Washington, D.C.
,
1991
.
19.
Teske
,
M. E.
,
Skyler
,
P. J.
, and
Barry
,
J. W.
, “
A Drop Size Distribution Database for Forest and Agricultural Spraying: Potential for Extended Application
,”
Proceedings of the ICLASS 5th International Conference, NIST Special Publication 813
, National Institute of Standards and Technology,
Gaithersburg, MD
,
1991
.
20.
Teske
,
M. E.
and
Thistle
,
H. W.
, “
Droplet Size Scaling of Agricultural Spray Material by Dimensional Analysis
,”
Atomization Sprays
, Vol.
10
, No.
2
,
2000
, pp. 147–158.
21.
Butler Ellis
,
M. C.
and
Tuck
,
C. R.
, “
How Adjuvants Influence Spray Formation With Different Hydraulic Nozzles
,”
Crop Protection
, Vol.
18
, No.
1
,
1999
, pp. 101–109.
22.
Prokop
,
M.
and
Kejklicek
,
R.
, “
Effect of Adjuvants on Spray Droplet Size of Water
,”
Research in Agricultural Engineering
, Vol.
48
, No.
4
,
2002
, pp. 144–148.
23.
Butler Ellis
,
M. C.
,
Tuck
,
C. R.
, and
Miller
,
P. C. H.
, “
The Effect of Some Adjuvants on Spray Produced by Agricultural Flat Fans
,”
Crop Protection
, Vol.
16
, No.
1
,
1996
, pp. 41–50.
24.
Spanoghe
,
P.
,
Schampheleire
,
M. D.
,
Van der Meeren
,
P.
, and
Steurbaut
,
W.
, “
Review: Influence of Agricultural Adjuvants on Droplet Spectra
,”
Pest Manage. Sci.
, Vol.
63
, No.
1
,
2007
, pp. 4–16.
25.
Sundaram
,
A.
,
Sundaram
,
K. M. S.
,
Robinson
,
A. G.
,
Beveridge
,
W. J. G.
, and
Leung
,
J. W.
, “
Drop Size Spectra and Deposit from Aerial Spraying With and Without a Polymeric Adjuvant
,”
Trans. ASAE
, Vol.
35
, No.
2
,
1992
, pp. 387–394.
26.
Dexter
,
R. W.
and
Huddleston
,
E. W.
, “
Effects of Adjuvants and Dynamic Surface Tension on Spray Properties under Simulated Aerial Conditions
,”
Pesticide Formulations and Applications Systems: Eighteenth Volume, ASTM STP 1347
,
Nalewaja
J. D.
,
Goss
G. R.
, and
Tann
R. S.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1998
, pp. 95–107.
27.
Lan
,
Y.
,
Hoffmann
,
W. C.
,
Fritz
,
B. K.
,
Martin
,
D. E.
, and
Lopez
,
J. D.
, Jr.
, “
Spray Drift Mitigation With Spray Mix Adjuvants
,”
Appl. Eng. Agric.
, Vol.
24
, No.
1
,
2008
, pp. 5–10.
28.
Wolf
,
R. E.
,
Gardisser
,
D. R.
, and
Minihan
,
C. L.
, “
Field Comparison for Drift Reducing/Deposition Aid Tank Mixes
,”
Proceedings of the Dec 8–11, 2003 ASAE/NAAA Technical Session
,
Reno, NV
, Dec 8–11,
2003
, ASAE, St. Joseph, MI.
29.
Kirk
,
I. W.
, “
Spray Mix Adjuvants for Spray Drift Mitigation
,”
Proceedings of the 2003 ASAE/NAAA Technical Session
,
Reno, NV
, Dec 8–11,
2003
, ASAE, St. Joseph, MI.
30.
Wolf
,
R. E.
, “
The Effect of Application Volume and Deposition Aids on Droplet Spectrum and Deposition for Aerial Applications
,”
Proceedings of the Dec 6–10, 2004 ASAE/NAAA Technical Session
,
Reno, NV
, Dec 6–10,
2004
, ASAE, St. Joseph, MI.
31.
Miller
,
P. C. H.
,
Hewitt
,
A. J.
, and
Bagely
,
W. E.
, “
Adjuvant Effects on Spray Characteristics and Drift Potential
,”
Pesticide Formulations and Applications Systems: Twenty-First Volume, ASTM STP 1414
,
Mueninghoff
J. C.
,
Viets
A. K.
, and
Downer
R. A.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2001
, pp. 175–184.
32.
Hewitt
,
A. J.
,
Solomon
,
K. R.
, and
Marshall
,
E. J. P.
, “
Spray Droplet Size, Drift Potential, and Risks to Nontarget Organisms from Aerially Applied Glyphosate for Coca Control in Colombia
,”
J. Toxicol. Environ. Health, Part A: Curr. Issues
, Vol.
72
, No.
1
,
2009
, pp. 921–929.
33.
Sanderson
,
R.
,
Hewitt
,
A. J.
,
Huddleston
,
E. W.
, and
Ross
,
J. B.
, “
Relative Drift Potential and Droplet Size Spectra of Aerially Applied Propanil Formulations
,”
Crop Protection
, Vol.
16
, No.
8
,
1997
, pp. 717–721.
34.
Sundaram
,
K. M. S.
,
Raske
,
A. G.
,
Retnakaran
,
A.
,
Sundaram
,
A.
, and
West
,
R. J.
, “
Effect of Formulation Properties on Ground and Foliar Deposits of Two Insecticides in Flushed and One-Year-Old Balsam Fir Needles following Aerial Applications
,”
Pestic. Sci.
, Vol.
21
, No.
1
,
1987
, pp. 105–118.
35.
Fritz
,
B. K.
,
Hoffmann
,
W. C.
,
Wolf
,
R. E.
,
Bretthauer
,
S.
, and
Bagely
,
W. E.
, “
Wind Tunnel and Field Evaluation of Drift from Aerial Spray Applications With Multiple Spray Formulations
,”
Pesticide Formulations and Delivery Systems: Innovating Legacy Products for New Uses, ASTM STP 1558
,
Bernards
M.
, Ed.,
ASTM International
,
West Conshohocken, PA
,
2012
, pp. 1–18.
36.
Fritz
,
B. K.
,
Hoffmann
,
W. C.
, and
Bagely
,
W. E.
, “
Effects of Formulated Glyphosate and Adjuvant Tank Mixes on Atomization from Aerial Application Flat Fan Nozzles
,”
Pesticide Formulations and Delivery Systems: Innovating Legacy Products for New Uses, ASTM STP 1558
,
Bernards
M.
, Ed.,
ASTM International
,
West Conshohocken, PA
,
2012
, pp. 1–16.
37.
Czaczyk
,
Zb.
, “
Influence of Air Flow Dynamics on Droplet Size in Conditions of Air Assisted Sprayers
,”
Atomization Sprays
, Vol.
22
, No.
4
,
2012
, pp. 275–282.
38.
Dodge
,
L. G.
, “
Comparison of Performance of Drop-Sizing Instruments
,”
Appl. Opt.
, Vol.
26
, No.
7
,
1987
, pp. 1328–1341.
39.
Frost
,
A. R.
and
Lake
,
J. R.
, “
The Significance of Drop Velocity to the Determination of Drop Size Distributions of Agricultural Sprays
,”
J. Agric. Eng. Res.
, Vol.
26
, No.
4
,
1981
, pp. 367–370.
40.
Arnold
,
A. C.
, “
A Comparative Study of Drop Sizing Equipment for Agricultural Fan-Spray Atomizers
,”
Aerosol Sci. Technol.
, Vol.
12
, No.
2
,
1990
, pp. 431–445.
41.
Dodge
,
L. E.
,
Rhodes
,
D. J.
, and
Reitz
,
R. D.
, “
Drop-Size Measurement Techniques for Sprays: Comparison of Malvern and Laser-Diffraction and Aerometrics Phase/Doppler
,”
Appl. Opt.
, Vol.
26
, No.
11
,
1987
, pp. 2144–2154.
42.
Chapple
,
A. C.
,
Taylor
,
R. A. J.
, and
Hall
,
F. R.
, “
The Transformation of Spatially Determined Drop Sizes to Their Temporal Equivalent for Agricultural Sprays
,”
J. Agric. Eng. Res.
, Vol.
60
, No.
1
,
1995
, pp. 49–56.
43.
Spray Drift Task Force
, “
Miscellaneous Nozzle Study No. A95-010
,”
MRID No. 44310401
,
U.S. Environmental Protection Agency
,
Washington, D.C.
,
1997
.
44.
Nyttens
,
D.
,
Baetens
,
K.
,
De Schampheleire
,
M.
, and
Sonck
,
B.
, “
Effect of Nozzle Type, Size and Pressure on Spray Droplet Characteristics
,”
Biosyst. Eng.
, Vol.
97
, No.
1
,
2007
, pp. 333–345.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal