Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 17th Volume
By
Bob Comstock
Bob Comstock
Editor
Search for other works by this author on:
Pierre Barbéris
Pierre Barbéris
Editor
Search for other works by this author on:
ISBN:
978-0-8031-7529-7
No. of Pages:
1178
Publisher:
ASTM International
Publication date:
2015

The oxidation of zirconium cladding alloys used in nuclear reactors was investigated under the conditions of loss-of-coolant and severe accidents, i.e., at temperatures between 600 and 1600°C and in various atmospheres. The kinetics were parabolic or sub-parabolic as long as the superficially formed oxide scale remained intact and protective. More or less linear kinetics were found after degradation of the oxide layer due to phase transitions connected with volume changes and formation of cracks and pores. The presence of nitrogen further accelerated oxidation rates by formation of zirconium nitride at the metal-oxide boundary and its re-oxidation with the progressing reaction. This paper summarizes extensive experimental work on high-temperature oxidation of zirconium alloys performed at KIT focusing on effects causing non-parabolic oxidation kinetics.

1.
Steinbrück
,
M.
,
Vér
,
N.
, and
Grosse
,
M.
, “
Oxidation of Advanced Zirconium Cladding Alloys in Steam at Temperatures in the Range of 600-1200°C
,”
Oxid. Metals
, Vol.
76
, Nos.
3–4
,
2011
, pp. 215–232.
2.
Grosse
,
M.
, “
Comparison of the High-Temperature Steam Oxidation Kinetics of Advanced Cladding Materials
,”
Nucl. Trans.
, Vol.
170
,
2010
, pp. 272–279.
3.
Steinbrück
,
M.
, “
Oxidation of Zirconium Alloys in Oxygen at High Temperatures up to 1600°C
,”
Oxid. Metals
, Vol.
70
, Nos.
5–6
,
2008
, pp. 317–329.
4.
Steinbrück
,
M.
, “
Prototypical Experiments Relating to Air Oxidation of Zircaloy-4 at High Temperatures
,”
J. Nucl. Mater.
, Vol.
392
, No.
3
,
2009
, pp. 531–544.
5.
Große
,
M.
,
Steinbrück
,
M.
,
Lehmann
,
E.
, and
Vontobel
,
P.
, “
Kinetics of Hydrogen Absorption and Release in Zirconium Alloys During Steam Oxidation
,”
Oxid. Metals
, Vol.
70
, Nos.
3–4
,
2008
, pp. 149–162.
6.
Große
,
M.
,
Lehmann
,
E.
,
Steinbrück
,
M.
,
Kühne
,
G.
, and
Stuckert
,
J.
, “
Influence of Oxide Layer Morphology on Hydrogen Concentration in Tin and Niobium Containing Zirconium Alloys After High Temperature Steam Oxidation
,”
J. Nucl. Mater.
, Vol.
385
, No.
2
,
2009
, pp. 339–345.
7.
Steinbrück
,
M.
,
Große
,
M.
,
Sepold
,
L.
, and
Stuckert
,
J.
, “
Synopsis and Outcome of the QUENCH Experimental Program
,”
Nucl. Eng. Des.
, Vol.
240
, No.
7
,
2010
, pp. 1714–1727.
8.
Evans
,
H. E.
,
Norfolk
,
D. J.
, and
Swan
,
T.
, “
Perturbation of Parabolic Kinetics Resulting from the Accumulation of Stress in Protective Oxide Layers
,”
J. Electrochem. Soc.
, Vol.
125
, No.
7
,
1978
, pp. 1180–1185.
9.
Steinbrück
,
M.
,
Stegmaier
,
U.
, and
Ziegler
,
T.
, “
Prototypical Experiments on Air Oxidation of Zircaloy-4 at High Temperatures
,”
Report FZKA 7257
,
Forschungszentrum Karlsruhe
,
Germany
,
2007
.
10.
Hofmann
,
P.
,
Miassoedov
,
A.
,
Steinbock
,
L.
,
Steinbrück
,
M.
,
Berdyshev
,
A. V.
,
Boldyrev
,
A. V.
,
Palagin
,
A. V.
,
Shestak
,
V. E.
, and
Veshchunov
,
M. S.
, “
Quench Behavior of Zircaloy Fuel Cladding Tubes. Small-Scale Experiments and Modeling of the Quench Phenomena
,”
Report FZKA 6208
,
Forschungszentrum Karlsruhe
,
1999
.
11.
Schanz
,
G.
,
Adroguer
,
B.
, and
Volchek
,
A.
, “
Advanced Treatment of Zircaloy Cladding High-Temperature Oxidation in Sever Accident Code Calculations. Part I. Experimental Data Base and Basic Modeling
,”
Nucl. Eng. Des.
, Vol.
232
, No.
1
,
2004
, pp. 75–84.
12.
Abriata
,
J. P.
,
Garcés
,
J.
, and
Versaci
,
R.
, “
The Zr-O (Zirconium-Oxygen) System
,”
Bull. Alloy Phase Diag.
, Vol.
7
, No.
2
,
1986
, pp. 116–124.
13.
Porte
,
H. A.
,
Schnizlein
,
J. G.
,
Vogel
,
R. C.
, and
Fischer
,
D. F.
, “
Oxidation of Zirconium and Zirconium Alloys
,”
J. Electrochem. Soc.
, Vol.
107
, No.
6
,
1960
, pp. 506–515.
14.
Dawson
,
J. K.
,
Long
,
G.
,
Seddon
,
W. E.
, and
White
,
J. F.
, “
The Kinetics and Mechanism of the Oxidation of Zircaloy-2 at 350–500°C
,”
J. Nucl. Mater.
, Vol.
25
, No.
2
,
1968
, pp. 179–200.
15.
Arima
,
T.
,
Moriyama
,
K.
,
Gaja
,
N.
,
Furuya
,
H.
,
Idemitsu
,
K.
, and
Inagaki
,
Y.
, “
Oxidation Kinetics of Zircaloy-2 Between 450°C and 600°C in Oxidizing Atmosphere
,”
J. Nucl. Mater.
, Vol.
257
, No.
1
,
1998
, pp. 67–77.
16.
Baek
,
H. J.
and
Jeong
,
Y. H.
, “
Breakaway Phenomenon of Zr-Based Alloys During a High-Temperature Oxidation
,”
J. Nucl. Mater.
, Vol.
372
, Nos.
2–3
,
2008
, pp. 152–159.
17.
Leistikow
,
S.
and
Schanz
,
G.
,
1985
, “
The Oxidation Behavior of Zircaloy-4 in Steam Between 600 and 1600°C
,”
Werkstoffe Korrosion
, Vol.
36
, No.
3
,
1985
, pp. 105–116.
18.
Tupin
,
M.
,
Pijolat
,
M.
,
Valdivieso
,
F.
,
Soustelle
,
M.
,
Frichet
,
A.
, and
Barberis
,
P.
, “
Differences in Reactivity of Oxide Growth During the Oxidation of Zircaloy-4 in Water Vapour Before and After the Kinetic Transition
,”
J. Nucl. Mater.
, Vol.
317
, Nos.
2–3
,
2003
, pp. 130–144.
19.
Park
,
D. J.
,
Park
,
J. Y.
,
Jeong
,
Y. H.
, and
Lee
,
J. Y.
, “
Microstructural Characterization of ZrO2 Layers Formed During the Transition to Breakaway Oxidation
,”
J. Nucl. Mater.
, Vol.
399
, Nos.
2–3
,
2010
, pp. 208–211.
20.
Yan
,
Y.
,
Burtseva
,
T. A.
, and
Billone
,
M. C.
, “
High-Temperature Steam-Oxidation Behavior of Zr-1Nb Cladding Alloys
,”
J. Nucl. Mater.
, Vol.
393
, No.
3
,
2009
, pp. 433–448.
21.
Idarraga
,
I.
,
Mermoux
,
M.
,
Duriez
,
C.
,
Crisci
,
A.
, and
Mardon
,
J. P.
, “
Raman Investigations of Pre- and Postbreakaway Oxide Scales Formed on Zircaloy-4 and M5 in Air at High Temperature
,”
J. Nucl. Mater.
, Vol.
421
, Nos.
1–3
,
2012
, pp. 160–171.
22.
Polatidis
,
E.
,
Frankel
,
P.
,
Wei
,
J.
,
Klaus
,
M.
,
Comstock
,
R. J.
,
Ambard
,
A.
,
Lyon
,
S.
,
Cottis
,
R. A.
, and
Preuss
,
M.
, “
Residual Stresses and Tetragonal Phase Fraction Characterisation of Corrosion Tested Zircaloy-4 Using Energy Dispersive Synchrotron X-Ray Diffraction
,”
J. Nucl. Mater.
, Vol.
432
, Nos.
1–3
,
2013
, pp. 101–112.
23.
Pétigny
,
N.
,
Barberis
,
P.
,
Lemaignan
,
C.
,
Valot
,
C.
, and
Lallemant
,
M.
, “
In Situ XRD Analysis of the Oxide Layers Formed by Oxidation at 743 K on Zircaloy 4 and Zr–1NbO
,”
J. Nucl. Mater.
, Vol.
280
, No.
3
,
2000
, pp. 318–330.
24.
Forgeron
,
T.
,
Brachet
,
J. C.
,
Barcelo
,
F.
,
Castaing
,
A.
,
Hivroz
,
J.
,
Mardon
,
J. P.
, and
Bernaudat
,
C.
, “
Experiment and Modeling of Advanced Fuel Rod Cladding Behavior Under LOCA Conditions: Alpha-Beta Phase Transition Kinetics and EDGAR Methodology
,”
Zirconium in the Nuclear Industry: Twelfth International Symposium
,
Sabol
G. P.
and
Moan
G. D.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2000
, pp. 256–278.
25.
Zusek
,
E.
,
Abriata
,
J. P.
, and
San-Martin
,
A.
, “
The H-Zr (Hydrogen-Zirconium) System
,”
Bull. Alloy Phase Diagr.
, Vol.
11
, No.
4
,
1990
, pp. 385–395.
26.
Steinbrück
,
M.
, “
Hydrogen Absorption by Zirconium Alloys at High Temperatures
,”
J. Nucl. Mater.
, Vol.
334
, No.
1
,
2004
, pp. 58–64.
27.
Grosse
,
M.
, “
Neutron Radiography: A Powerful Tool for Fast, Quantitative and Non-Destructive Determination of the Hydrogen Concentration and Distribution in Zirconium Alloys
,”
J. ASTM Int.
, Vol.
8
,
2011
, JAI 103251.
28.
Grosse
,
M.
, “
High Temperature Oxidation in Nuclear Reactor Systems
,”
Nuclear Corrosion Science and Engineering
,
Feron
D.
, Ed.,
Woodhead Publishing Limited
,
Cambridge, UK
,
2012
.
29.
Grosse
,
M.
,
Lehmann
,
E.
,
Vontobel
,
P.
, and
Steinbrueck
,
M.
, “
Quantitative Determination of Absorbed Hydrogen in Oxidized Zircaloy by Means of Neutron Radiography
,”
Nucl. Instrum. Methods Phys. A
, Vol.
566
, No.
2
,
2006
, pp. 739–745.
30.
Chung
,
H. M.
, “
Fuel Behavior Under Loss-of-Coolant-Accident Situations
,”
Nucl. Eng. Des.
, Vol.
37
,
2005
, pp. 327–362.
31.
Perez-Feró
,
E.
, “
High-Temperature Behaviour of E110G Cladding
,”
Proceedings of the 17th International QUENCH Workshop
,
Karlsruhe, Germany
, Nov 22–24,
2011
.
32.
Pawel
,
R. E.
,
Cathcart
,
J. V.
, and
McKee
,
R. A.
, “
The Kinetics of Oxidation of Zircaloy-4 in Steam at High Temperatures
,”
J. Electrochem. Soc.
, Vol.
126
, No.
7
,
1979
, pp. 1105–1111.
33.
Anttila
,
A.
,
Räisänen
,
J.
, and
Keinonen
,
J.
, “
Diffusion of Nitrogen in α-Zr and α-Hf
,”
J. Less Common Metals
, Vol.
96
,
1984
, pp. 257–262.
34.
Perkins
,
R. A.
, “
The Diffusion of Oxygen on Oxygen Stabilized α-Zirconium and Zircaloy-4
,”
J. Nucl. Mater.
, Vol.
73
, No.
1
,
1978
, pp. 20–29.
35.
Steinbrück
,
M.
and
Jung
,
M.
, “
High-Temperature Reaction of α-Zr(O) with Nitrogen
,”
Proceedings of the International Congress on Advances in Nuclear Power Plants ICAPP2011
,
Nice, France
, May 2–5,
2011
, pp. 948–954.
36.
Steinbrück
,
M.
and
Böttcher
,
M.
, “
Air Oxidation of Zircaloy4, M5 and ZIRLO Cladding Alloys at High Temperatures
,”
J. Nucl. Mater.
, Vol.
414
, No.
2
,
2011
, pp. 276–285.
37.
Stuckert
,
J.
and
Veshchunov
,
M. V.
, “
Behaviour of Oxide Layer of Zirconium-Based Fuel Rod Cladding Under Steam Starvation Conditions
,”
Report FZKA 7373
,
Forschungszentrum Karlsruhe
,
Germany
,
2008
.
38.
Steinbrück
,
M.
and
Ver
,
N.
, “
High-Temperature Oxidation of Zircaloy-4 in Mixed Steam-Air and Steam-Nitrogen Atmospheres
,”
Proceedings of the International Congress on Advances in Nuclear Power Plants ICAPP2010
,
San Diego, CA
, June 13–17,
2010
, pp. 1051–1061.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal