Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Nanofluids
By
K. Narayan Prabhu
K. Narayan Prabhu
JAI Guest Editor
1
National Institute of Technology Karnataka
, Surathkal,
Mangalore,
IN
Search for other works by this author on:
ISBN:
978-0-8031-7555-6
No. of Pages:
196
Publisher:
ASTM International
Publication date:
2012

This paper is a continuation of the authors' previous work on the nucleate pool boiling heat transfer of nanofluids [Suriyawong, A. and Wongwises, S., “Nucleate pool boiling heat transfer characteristics of TiO2-water nanofluids at very low concentrations,” Exp. Therm. Fluid Sci., Vol. 34, No. 8, 2010, pp. 992–999.] This study presents new correlation for predicting heat transfer coefficient for nucleate pool boiling of TiO2-water nanofluids at several low concentrations. Unlike most previous studies, the proposed correlation consists of various relevant factors. Two horizontal circular plates made from copper and aluminum with different surface roughness values are used as heating surfaces. Because the calculation concerns with properties of nanofluids, this research uses various correlations from previous studies to find the properties of nanofluids and the best one is selected for the presentation. Compared with measured data of nucleate pool boiling of water and nanofluids from present and previous studies, it was found that the developed correlation could be used for prediction at a certain level.

1.
Li
,
C. H.
,
Wang
,
B. X.
, and
Peng
,
X. F.
, “
On the Pool Boiling of Subcooled Nano-Particle Suspensions
,”
Proceedings of 6th International Symposium on Heat Transfer
,
Beijing, China
, June 15–19,
2004
, pp. 505–510.
2.
Vassallo
,
P.
,
Kumar
,
R.
, and
Amico
,
S. D.
, “
Pool Boiling Heat Transfer Experiments in Silica–Water Nano-Fluids
,”
Int. J. Heat Mass Transfer
, Vol.
47
, No.
2
,
2004
, pp. 407–411.
3.
Kim
,
H.
,
Kim
,
J.
, and
Kim
,
M.
, “
Experimental Study on CHF Characteristics of Water-TiO2 Nano-Fluids
,
Nucl. Eng. Tech.
, Vol.
38
, No.
1
,
2006
, pp. 61–68.
4.
Kim
,
H.
,
Kim
,
J.
, and
Kim
,
M.
, “
Effect of Nanoparticles on CHF Enhancement in Pool Boiling of Nano-Fluids
,”
Int. J. Heat Mass Transfer
, Vol.
49
, No.
25–26
,
2006
, pp. 5070–5074.
5.
Golubovic
,
M. N.
,
Madhawa Hettiarachchi
,
H. D.
,
Worek
,
W. M.
, and
Minkowycz
,
W. J.
, “
Nanofluids and Critical Heat Flux, Experimental and Analytical Study
,”
Appl. Therm. Eng.
, Vol.
29
, No.
7
,
2009
, pp. 1281–1288.
6.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
, Vol.
83
, No.
16
,
2003
, pp. 3374–3376.
7.
Bang
,
I. C.
and
Chang
,
S. H.
, “
Boiling Heat Transfer Performance and Phenomena of Al2O3-Water Nano-Fluids from a Plain Surface in a Pool
,
Int. J. Heat Mass Transfer
, Vol.
48
, No.
12
,
2005
, pp. 2407–2419.
8.
Nishikawa
,
K.
,
Fujita
,
Y.
,
Uchida
,
S.
, and
Ohta
,
H.
, “
Effect of Surface Configuration on Nucleate Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
, Vol.
27
, No.
9
,
1984
, pp. 1559–1571.
9.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
, Vol.
50
, No.
19–20
,
2007
, pp. 4105–4116.
10.
Liu
,
Z.
,
Liao
,
L.
, “
Sorption and Agglutination Phenomenon of Nanofluids on a Plain Heating Surface During Pool Boiling
,”
Int. J. Heat Mass Transfer
, Vol.
51
, No.
9–10
,
2008
, pp. 2593–2602.
11.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
, “
Pool Boiling Characteristics of Nano-Fluids
,”
Int. J. Heat Mass Transfer
, Vol.
46
, No.
5
,
2003
, pp. 851–862.
12.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
, “
Pool Boiling of Nano-Fluids on Horizontal Narrow Tube
,”
Int. J. Multiphase Flow
, Vol.
29
, No.
8
,
2003
, pp. 1237–1247.
13.
Trisaksri
,
V.
and
Wongwises
,
S.
, Nucleate Pool Boiling Heat Transfer of TiO2– R141b Nanofluids,”
Int. J. Heat Mass Transfer
, Vol.
52
, No.
5–6
,
2009
, pp. 1582–1588.
14.
Suriyawong
,
A.
Wongwises
,
S.
, “
Nucleate Pool Boiling Heat Transfer Characteristics of TiO2-Water Nanofluids at Very Low Concentrations
,”
Exp. Therm. Fluid Sci.
, Vol.
34
, No.
8
,
2010
, pp. 992–999.
15.
Whalley
,
P. B.
,
Boiling, Condensation, and Gas-Liquid Flow
, 1st ed.,
Oxford University Press
,
New York
,
1990
, pp. 131–133.
16.
Rohsenow
,
W. M.
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
, Vol.
74
,
1952
, pp. 969–975.
17.
Pak
,
B. C.
,
Cho
,
Y. I.
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
, Vol.
11
, No.
2
,
1998
, pp. 151–170.
18.
Xuan
Y.
, and
Roetzel
,
W.
, Conceptions for Heat Transfer Correlation of Nanofluids,”
Int. J. Heat Mass Transfer
, Vol.
43
, No.
19
,
2000
, pp. 3701–3707.
19.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S. U. S.
, “
Thermal Conductivity of Nanoparticles-Fluid Mixture
,”
J. Thermophys. Heat Transfer
, Vol.
13
, No.
4
,
1999
, pp. 474–480.
20.
Drew
,
D. A.
and
Passman
,
S. L.
,
Theory of Multicomponent Fluids
,
Springer
,
Berlin
,
1999
, pp. 121–128.
21.
Brinkman
,
H. C.
, “
The Viscosity of Concentrated Suspensions and Solution
,”
J. Chem. Phys.
, Vol.
20
, No.
4
,
1952
, pp. 571–581.
22.
Hamilton
,
R. L.
and
Crosser
,
O. K.
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
, Vol.
1
, No.
3
,
1962
, pp. 187–191.
23.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, “
Enhanced Thermal Conductivity of TiO2-Water Based Nanofluids
,”
Int. J. Therm. Sci.
, Vol.
44
, No.
4
,
2005
, pp. 367–373.
24.
Wasp
,
F. J.
,
Solid-Liquid Flow Slurry Pipeline Transportation
,
Trans Tech Publications
,
Clausthal
,
1977
.
25.
Yu
W.
and
Choi
,
S. U. S.
, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,
J. Nanopart. Res.
, Vol.
5
, No.
4
,
2003
, pp. 167–171.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal