Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Nanofluids
By
K. Narayan Prabhu
K. Narayan Prabhu
JAI Guest Editor
1
National Institute of Technology Karnataka
, Surathkal,
Mangalore,
IN
Search for other works by this author on:
ISBN:
978-0-8031-7555-6
No. of Pages:
196
Publisher:
ASTM International
Publication date:
2012

Al-alloy (Al-5 wt. %Zn and Al-5 wt. %Si) nanoparticle dispersed (0.01–2.00 vol. %) ethylene glycol based nanofluids are prepared by a two-step process. Prior to dispersing in ethylene glycol by magnetic stirring and ultrasonication the Al-alloy nanoparticles synthesized by mechanical alloying are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area diffraction (SAD), and energy dispersive spectroscopy (EDS) to analyze the identity, size, shape, and purity of the powder. A maximum thermal conductivity enhancement of 16 % for Al-5 wt. %Zn and 13 % for Al-5 wt. %Si dispersed nanofluids are observed at 0.1 vol. % of nanoparticle concentrations. Rheological studies of nanofluids show interesting findings as the viscosity of both types of nanofluids are observed to exhibit values lower than that of base fluid at lower concentrations and higher at higher concentrations. Maximum enhancement of viscosity up to 180 % for Al-5 wt. %Si and 120 % for Al-5 wt. %Zn dispersed nanofluids are observed at 2.0 vol. % concentration.

1.
Choi
,
S. U. S.
,
Developments and Applications of Non-Newtonian Flows
edited by
Siginer
D. A.
and
Wang
H. P.
,
ASME
,
NY
, FED231/MD-66;1995: 99.
2.
Anoop
,
K. B.
,
Kabelac
,
S.
,
Sundararajan
,
T.
, and
Das
,
S. K.
, “
Rheological and flow characteristics of nanofluids: Influence of electroviscous effects and particle agglomeration
,”
J. Appl. Phys.
, Vol.
106
,
2009
, p. 034909.
3.
Wang
,
X -Q.
and
Mujumdar
,
A. S.
, “
Heat transfer characteristics of nanofluids: A review
,”
Int. J. Therm. Sci.
, Vol.
46
,
2007
, pp. 1–19.
4.
Daungthongsuk
,
W.
and
Wongwises
,
S.
, “
A critical review of convective heat transfer of nanofluids
,”
Renewable Sustainable Energy Rev.
, Vol.
11
,
2007
, pp. 797–817.
5.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, “
Thermophysical and electrokinetic properties of nanofluids – A critical review
,”
Appl. Therm. Eng.
, Vol.
28
,
2008
, pp. 2109–2125.
6.
Yu
,
W.
,
France
,
D. M.
,
Routbort
,
J. L.
, and
Choi
,
S. U. S.
, “
Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements
,”
Heat Transfer Eng.
, Vol.
29
(
5
),
2008
, pp. 432–460.
7.
Choi
,
S. U. S.
, “
Nanofluids: From Vision to Reality Through Research
,”
J. Heat Transfer
, Vol.
131
,
2009
, p. 033106.
8.
Wen
,
D.
,
Lin
,
G.
,
Vafaei
,
S.
, and
Zhang
,
K.
, “
Review of nanofluids for heat transfer applications
,”
Particuol.
, Vol.
7
,
2009
, pp. 141–150.
9.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
, Vol.
121
,
1999
, pp. 280–289.
10.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S.U.S.
, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
, Vol.
13
,
1999
, pp. 474–480.
11.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
and
Grulke
,
E. A.
, “
Anomalously Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
, Vol.
79
,
2001
, pp. 2252–2254.
12.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, “
Anomalously Increased Effective Thermal Conductivity of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
, Vol.
78
,
2001
, pp. 718–720.
13.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
, and
Liu
,
Y.
, “
Thermal Conductivity of Suspensions Containing Nanosized SiC Particles
,”
Int. J. Thermophys.
, Vol.
23
,
2002
, pp. 571–580.
14.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
, and
Ai
,
F.
, “
Thermal Conductivity Enhancement of Suspensions Containing Nano sized Alumina Particles
,”
J. Appl. Phys.
, Vol.
91
,
2002
, pp. 4568–4572.
15.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
, Vol.
125
,
2003
, pp. 567–574.
16.
Eastman
,
J. A.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Keblinski
,
P.
, “
Thermal Transport in Nanofluids
,”
Annu. Rev. Mater. Res.
, Vol.
34
(
1
),
2004
, pp. 219–246.
17.
Assael
,
M. J.
,
Metaxa
,
I. N.
,
Arvanitidis
,
J.
,
Christofilos
,
D.
, and
Lioutas
,
C.
, “
Thermal Conductivity Enhancement in Aqueous Suspensions of Carbon Multi-Walled and Double-Walled Nanotubes in the Present of Two Different Dispersants
,”
Int. J. Thermophys.
, Vol.
26
,
2005
, pp. 647–664.
18.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, “
Enhanced Thermal Conductivity of TiO2-Water Based Nanofluids
,”
Int. J. Therm. Sci.
, Vol.
44
,
2005
, pp. 367–373.
19.
Liu
,
M.
,
Lin
,
M.
,
Tsai
,
C. Y.
, and
Wang
,
C.
, “
Enhancement of Thermal Conductivity with Cu for Nanofluids Using Chemical Reduction Method
,”
Int. J. Heat Mass Transfer
, Vol.
49
,
2006
, pp. 3028–3033.
20.
Putnam
,
S. A.
,
Cahill
,
D. G.
,
Braun
,
P. V.
,
Ge
,
Z.
, and
Shimmin
,
R. G.
, “
Thermal Conductivity of Nanoparticle Suspensions
,”
J. Appl. Phys.
, Vol.
99
,
2006
, p. 084308.
21.
Chopkar
,
M.
,
Das
,
P. K.
, and
Manna
,
I.
, “
Synthesis and characterization of nanofluid for advanced heat transfer applications
,”
Scr. Mater.
, Vol.
55
,
2006
, pp. 549–552.
22.
Philip
,
J.
,
Shima
,
P. D.
, and
Raj
,
B.
, “
Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures
,”
Appl. Phys. Lett.
, Vol.
91
,
2007
, pp. 203108.
23.
Chopkar
,
M.
,
Kumar
,
S.
,
Bhandari
,
D. R.
,
Das
,
P. K.
, and
Manna
,
I.
, “
Development and characterization of Al2Cu and Ag2Al nanoparticle dispersed water and ethylene glycol based nanofluid
,”
Mater. Sci. Eng., B
, Vol.
139
,
2007
, pp. 141–148.
24.
Karthikeyan
,
N. R.
,
Philip
,
J.
, and
Raj
,
B.
, “
Effect of clustering on the thermal conductivity of nanofluids
,”
Mater. Chem. Phys.
, Vol.
109
,
2008
, pp. 50–55.
25.
Choi
,
C.
,
Yoo
,
H. S.
, and
Oh
,
J. M.
, “
Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants
,”
Curr. Appl. Phys.
, Vol.
8
,
2008
, pp. 710–712.
26.
Jha
,
N.
, and
Ramaprabhu
,
S.
, “
Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids
,”
J. Appl. Phys.
, Vol.
106
,
2009
, pp. 084317.
27.
Shima
,
P. D.
,
Philip
,
J.
, and
Raj
,
B.
, “
Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids
,”
Appl. Phys. Lett.
, Vol.
94
,
2009
, p. 223101.
28.
Jiang
,
W.
,
Ding
,
G.
, and
Peng
,
H.
, “
Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants
,”
Int. J. Therm. Sci.
, Vol.
48
,
2009
, pp. 1108–1115.
29.
Paul
,
G.
,
Pal
,
T.
, and
Manna
,
I.
, “
Thermo-physical property measurement of nano-gold dispersed water based nanofluids prepared by chemical precipitation technique
,”
J. Colloid Interface Sci.
, Vol.
349
,
2010
, pp. 434–437.
30.
Maxwell
,
J. C.
,
Treatise on Electricity and Magnetism
,
Clarendon
,
Oxford
,
1873
.
31.
Hamilton
,
R. L.
and
Crosser
,
O. K.
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
, Vol.
1
(
3
),
1962
, pp. 187–191.
32.
Davis
,
R. H.
, “
The effective thermal conductivity of a composite material with spherical inclusions
,”
Int. J. Thermophys.
, Vol.
7
,
1986
, pp. 609–620.
33.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, “
Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)
,”
Int. J. Heat Mass Transfer
, Vol.
45
,
2002
, pp. 855–863.
34.
Yu
,
W.
and
Choi
,
S. U. S.
, “
The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton–Crosser model
,”
J. Nanopart. Res.
, Vol.
6
,
2004
, pp. 355–361.
35.
Feng
,
Y.
,
Yu
,
B.
,
Xu
,
P.
, and
Zou
,
M.
, “
The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles
,”
J. Phys. D: Appl. Phys.
, Vol.
40
,
2007
, pp. 3164–3171.
36.
Bhattacharya
,
P.
,
Saha
,
S. K.
,
Yadav
,
A.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
, “
Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids
,”
J. Appl. Phys.
, Vol.
95
(
11
),
2004
, pp. 6492–6494.
37.
Shukla
,
R. K.
and
Dhir
,
V. K.
, “
Effect of Brownian Motion on Thermal Conductivity of Nanofluids
,”
J. Heat Transfer
, Vol.
130
,
2008
, p. 042406.
38.
Prasher
,
R.
,
Song
,
D.
, and
Wang
,
J.
, “
Measurements of nanofluid viscosity and its implications for thermal applications
,”
Appl. Phys. Lett.
, Vol.
89
,
2006
, p. 133108.
39.
Chen
,
H.
,
Ding
,
Y.
, and
Tan
,
C.
, “
Rheological behaviour of nanofluids
,”
New J. Phys.
, Vol.
9
,
2007
, pp. 367(1–25).
40.
Jang
,
S. P.
,
Lee
,
J.-H.
, and
Hwang
,
K. S.
, “
Particle concentration and tube size dependence of viscosities of Al2O3-water nanofluids flowing through micro- and mini-tubes
,”
Appl. Phys. Lett.
, Vol.
91
,
2007
, p. 243112.
41.
Nguyen
,
C. T.
,
Desgranges
,
F.
,
Roy
,
G.
,
Galanis
,
N.
,
Mare
,
T.
,
Boucher
,
S.
, and
Mintsa
,
H. A.
, “
Temperature and particle-size dependent viscosity data for water-based nanofluids – Hysteresis phenomenon
,”
Int. J. Heat Fluid Flow
, Vol.
28
,
2007
, pp. 1492–1506.
42.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, “
Investigations of thermal conductivity and viscosity of nanofluids
,”
Int. J. Therm. Sci.
, Vol.
47
,
2008
, pp. 560–568.
43.
Chen
,
H.
,
Ding
,
Y.
, and
Lapkin
,
A.
, “
Rheological behaviour of nanofluids containing tube / rod-like nanoparticles
,”
Powder Technol.
Vol.
194
,
2009
, pp. 132–141.
44.
Gleiter
,
H.
,
Nanocryst. Mater., Prog. Mater. Sci.
, Vol.
33
(
4
),
1989
, pp. 223–315.
45.
Vives
,
S.
,
Gaffet
,
E.
, and
Meunier
,
C.
, “
X-ray diffraction line profile analysis of iron ball milled powders
,”
Mater. Sci. Eng. A
, Vol.
366
,
2004
, pp. 229–238.
46.
Savosta
,
M. M.
,
Krivoruchko
,
V. N.
,
Danilenko
,
I. A.
,
Tarenkov
,
V. Y.
,
Konstantinova
,
T. E.
,
Borodin
,
A. V.
, and
Varyukhin
,
V. N.
, “
Nuclear spin dynamics and magnetic structure of nanosized particles of La0.7Sr0.3MnO3
,”
Phys. Rev. B
, Vol.
69
,
2004
, p. 024413.
47.
Paul
,
G.
,
Philip
,
J.
,
Raj
,
B.
,
Das
,
P. K.
, and
Manna
,
I.
, “
Synthesis, characterization, and thermal property measurement of nano-Al95Zn05 dispersed nanofluid prepared by a two-step process
,”
Int. J. Heat Mass Transfer
, Vol.
54
,
2011
, pp. 3783–3788.
48.
Beck
,
M. P.
,
Yuan
,
Y.
,
Warrier
,
P.
, and
Teja
,
A. S.
, “
The effect of particle size on the thermal conductivity of alumina nanofluids
,”
J. Nanopart. Res.
, Vol.
11
,
2009
, pp. 1129–1136.
49.
Paul
,
G.
,
Sarkar
,
S.
,
Pal
,
T.
,
Das
,
P. K.
, and
Manna
,
I.
, “
Concentration and size dependence of nano-silver dispersed water based nanofluids
,”
J. Colloid Interface Sci.
, Vol.
371
,
2012
, pp. 20–27.
50.
Pastoriza-Gallego
,
M. J.
,
Lugo
,
L.
,
Legido
J. L.
, and
Piñeiro
,
M. M.
, “
Rheological non-Newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids
,”
Nanoscale Res. Lett.
, Vol.
6
,
2011
, pp. 560–567.
51.
Chen
,
L.
,
Xie
,
H.
,
Li
,
Y.
, and
Yu
,
W.
, “
Nanofluids containing carbon nanotubes treated by mechanochemical reaction
,”
Thermochim. Acta
, Vol.
477
,
2008
, pp. 21–24.
52.
Wang
,
B.
,
Wang
,
X.
,
Lou
,
W.
, and
Hao
,
J.
, “
Rheological and Tribological Properties of Ionic Liquid-Based Nanofluids Containing Functionalized Multi-Walled Carbon Nanotubes
,”
J. Phys. Chem. C
, Vol.
114
,
2010
, pp. 8749–8754.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal