Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Effects of Radiation on Nuclear Materials: 25th Volume
By
Takuya Yamamoto
Takuya Yamamoto
Guest Editor and Symposium Co-Chairperson
1
University of California - Santa Barbara
,
Santa Barbara, CA,
US
Search for other works by this author on:
Editor
Mikhail A. Sokolov
Mikhail A. Sokolov
Symposium Co-Chairperson
2
Oak Ridge National Laboratory
,
Oak Ridge, TN,
US
Search for other works by this author on:
Brady D. Hanson
Brady D. Hanson
Symposium Co-Chairperson
3
Pacific Northwest National Laboratory
,
Richland, WA,
US
Search for other works by this author on:
ISBN:
978-0-8031-7533-4
No. of Pages:
362
Publisher:
ASTM International
Publication date:
2013

Neutron irradiation often introduces severe changes in the mechanical properties of austenitic and martensitic steels (e.g., reduction of elongation below 400°C). This affects the mechanical responses of the reactor components. A large amount of hot cell work, however, is required in order to examine the mechanical response of intensely irradiated components experimentally, as well as to obtain materials irradiation data for the estimation of the component behavior. The development of a methodology with which to estimate the mechanical response of such components based on knowledge of the irradiation-induced microstructural changes and models of the post-irradiation mechanical properties is therefore an effective way to evaluate the structural integrity of an intensely irradiated structural component with minimal effort. A methodology for simulating the microstructural changes of face-centered cubic metals during irradiation using molecular dynamics and rate equation (RE) calculations has been developed. For RE calculation, the capture radius of the point defect clusters has been obtained through in situ ion irradiation experiments. The flow stress level is estimated from the dispersed barrier hardening equation with calculated microstructural data. By means of correlating the limited data from irradiation experiments with the calculated results (relation between the flow stress level and the microstructure of a heat), the flow stress levels of the heat can be estimated accurately as functions of the damage level and temperature. A Swift type constitutive equation with the concept of an equivalent plastic strain of irradiation hardening is proposed from the work hardening behavior of irradiated steels. By using this equation, it is possible to estimate the deformation and ductile fracture conditions of intensely irradiated components. This is a preliminary multi-scale method for estimating the mechanical response of irradiated components.

1.
American Society of Mechanical Engineers
, “
Guideline on the Approval of New Materials under the ASME Boiler and Pressure Vessel Code
,”
ASME Boiler and Pressure Vessel Code
,
ASME
,
New York
,
2001
.
2.
Farrell
,
K.
,
Byun
,
T. S.
, and
Hashimoto
,
N.
, “
Mapping Flow Localization Processes in Deformation of Irradiated Reactor Structural Alloys—Final Report
,” Report No. ORNL/TM-2003/63,
2002
,
U.S. Department of Energy
.
3.
Higgy
,
H. R.
and
Hammad
,
F. H.
, “
Effect of Fast-neutron Irradiation on Mechanical Properties of Stainless Steels: AISI Types 304, 316 and 347
,”
J. Nucl. Mater.
, Vol.
55
,
1975
, pp. 177–186.
4.
Mattas
,
R. F.
,
Smith
,
D. L.
,
Wu
,
C. H.
,
Kuroda
,
T.
, and
Shatalov
,
G.
, “
Materials Issues In the Design of the ITER First Wall, Blanket and Divertor
,”
J. Nucl. Mater.
, Vols.
191–194
,
1992
, pp. 139–145.
5.
Elen
,
J. D.
and
Fennici
,
P.
, “
Fast Neutron Irradition Hardening of Austenitic Stainless Steel at 250 °C
,”
J. Nucl. Mater.
, Vols.
191–194
,
1992
, pp. 766–770.
6.
Dupouy
,
J. M.
,
Erler
,
J.
, and
Huillery
,
R.
, “
Post-Irradiation Mechanical Properties of Annealed and Cold Worked 316 Stainless Steel After Irradiation to High Fast Neutron Fluences
,” in Session II: Mechanical properties,
Proceedings of the International Conference on Radiation Effects in Breeder Reactor Structural Materials
,
AIME
,
New York
,
1977
, pp. 83–93.
7.
Brager
,
H. R.
,
Blackburn
,
L. D.
, and
Greenslade
,
D. L.
, “
The Dependence on Displacement Rate of Radiation-induced Changes in Microstructural and Tensile Properties of AISI 304 and 316
,”
J. Nucl. Mater.
, Vols.
122–123
,
1984
, pp. 332–337.
8.
Rensman
,
J.
, “
NRG Irradiation Testing: Report on 300 °C and 60 °C Irradiated RAFM Steels 2.5 and 10 dpa Neutron Irradiated Eurofer97 Plate, HIPed Powder, HIP Diffusion Welds, TIG Welds, EB Welds, F82H and NRG 9Cr Lab Heats,
” Report No. 20023/05.68497/P,
NRG
, Petten, the Nederland,
2005
.
9.
Japan Nuclear Energy Safety Organization (JNES), “
Report on IASCC Evaluation Technology
,” Report No. 09 Gen Koh Hoh-0012,
JNES
, Tokyo, Japan,
2009
(in Japanese).
10.
Yoshida
,
N.
,
Kiritani
,
M.
, and
Fujita
,
F. E.
, “
Electron Radiation Damage of Iron in High Voltage Electron Microscope
,”
J. Phys. Soc. Japan.
, Vol.
39
, No.
1
,
1975
, pp. 170–179.
11.
Kiritani
,
M.
, “
Microstructure Evolution During Radiation Damage With Collision Cascade
,”
Sci. Rep. Res. Inst.
Tohoku Univ. A, Vol.
A40
,
1994
, pp. 29–47.
12.
Stoller
,
R. E.
, “
Non-Steady-State Conditions and Incascade Clustering in Radiation Damage Modeling
,”
J. Nucl. Mater.
, Vol.
244
,
1997
, pp. 195–204.
13.
Yoshiie
,
T.
,
Kojima
,
S.
, and
Kiritani
,
M.
, “
Factors to Influence the Nucleation and Growth of Interstitial Clusters During Cascade Damage
,”
J. Nucl. Mater.
, Vols.
212–215
,
1999
, pp. 186–191.
14.
Katoh
,
Y.
,
Stoller
,
R. E.
,
Kohyama
,
A.
, and
Muroga
,
T.
, “
Simulating the Influence of Radiation Temperature Variations on microstructural Evolution
,”
J. Nucl. Mater.
, Vols.
283–287
,
2000
, pp. 313–318.
15.
Gan
,
J.
,
Was
,
G. S.
, and
Stoller
,
R. E.
, “
Modeling of Microstructure Evolution in Austenitic Stainless Steels Irradiated Under Light Water Reactor Condition
,”
J. Nucl. Mater.
, Vol.
299
,
2001
, pp. 53–67.
16.
Hernandez-Mayoral
,
M.
,
Caturla
,
M. J.
,
Perlado
,
J. M.
,
Martiness
,
E.
, and
Marian
,
J.
, “
Basic Experiments for Understanding Microstructure Evolution Under Irradiation: TEM and KMC Characterization of Irradiated Pure Iron
,” http://www.oecd-nea.org/science/struct_mater/Presentations/HERNANDEZ_MAYORAL_CATURLA.pdf at “
Workshop on Structural Materials for Innovative Nuclear Systems (SMINS)
” (http://www.oecd-nea.org/science/struct_mater/index.html), 2007, accessed on June. 3,
2011
.
17.
Singh
,
B. N.
,
Golubov
,
S. I.
,
Trinkaus
,
H.
,
Serra
,
A.
,
Osetsky
,
Yu.
N.
, and
Barashev
,
A. V.
, “
Aspects of Microstructure Evolution Under Cascade Damage Conditions
,”
J. Nucl. Mater.
, Vol.
251
,
1997
, pp. 107–122.
18.
Johnson
,
G. D.
,
Garner
,
F. A.
,
Brager
,
H. R.
, and
Fish
,
R. L.
, “
A Microstructural Interpretation of the Influence and Temperature Dependence of the mechanical Properties of Irradiated AISI 316,”
ASTM STP 725
,
ASTM International
,
West Conshohocken, PA
,
1981
, pp. 393–412.
19.
Swift
,
H. W.
, “
Plastic Instability Under Plane Stress
,”
J. Mech. Phys.
Solids, Vol.
1
,
1952
, pp. 1–18.
20.
Jitsukawa
,
S.
,
Ioka
,
I.
, and
Hishinuma
,
A.
, “
Post-irradiation Mechanical Properties of Austenitic Alloys at Temperatures Below 703 K
,”
J. Nucl. Mater.
, Vols.
271–272
,
1999
, pp. 167–172.
21.
DiMelfi
,
R. J.
and
Kramer
,
J. M.
, “
Modeling the Effects of Fast-Neutron Irradiation on the Subsequent Mechanical Bihaviour of Type 316 Stainless Steel
,”
J. Nucl. Mater.
, Vol.
89
,
1980
, pp. 338–346.
22.
Byun
,
T. S.
and
Farrell
,
K.
, “
Plastic Instability in Polycrystalline Metals After Low Temperature Irradiation
,”
Acta Mater.
, Vol.
52
,
2004
, pp. 1597–1608.
23.
Hunn
,
J. D.
,
Lee
,
E. H.
,
Byun
,
T. S.
, and
Mansur
,
L. K.
, “
Helium and Hydrogen Induced Hardening in 316LN Stainless Steel
,”
J. Nucl. Mater.
, Vol.
282
,
2000
, pp. 131–136.
24.
Jitsukawa
,
S.
,
Suzuki
,
K.
,
Okubo
,
N.
,
Ando
,
M.
, and
Shiba.
K.
, “
Irradiation Effects on Reduced Activation Ferritic/Martensitic Steels—Tensile, Impact, Fatigue Properties and Modelling
,”
Nucl. Fusion
, Vol.
49
,
2009
, pp. 115006 (8pp).
25.
Ziegler
,
J. F.
,
2008
, “
SRIM Code
,” http://www.srim.org/, accessed on June 30,
2008
.
26.
Weertman
,
J.
and
Weertman
,
J. R.
,
Elementary Dislocation Theory
,
Macmillan
,
New York
,
1964
.
27.
Singh
,
B. N.
and
Foreman
,
A. J. E.
, “
Production Bias and Void Swelling in the Transient Regime Under Cascade Damage Conditions
,”
Philos. Mag.
, Vol.
A66
,
1992
, pp. 975–990.
28.
van der Schaaf
,
B.
,
Grossbeck
M.
, and
Scheurer
,
H.
, Report No. EUR 10659,
Commission of the European Communities
,
1986
, 574.
29.
Voskoboinikov
,
R. E.
,
Osetsky
,
Yu.
N.
, and
Bacon
,
D. J.
, “
Computer Simulation of Primary Damage Creation in Displacement Cascades in Copper. I. Defect Creation and Cluster Statistics
,”
J. Nucl. Mater.
, Vol.
377
,
2008
, pp. 385–395.
30.
Osetsky
,
Yu.
N.
,
Bacon
,
D. J.
,
Serra
,
A.
,
Singh
,
B. N.
, and
Golubov
,
S. I.
, “
Stability and Mobility of Defect Clusters and Dislocation Loops in Metals
,”
J. Nucl. Mater.
, Vol.
276
,
2000
, pp. 65–77.
31.
Maziasz
,
P. J.
, “
Effects of Helium Content on Microstructural Development in Type 316 Stainless Steel Under Neutron Irradiation,”
Report No. ORNL-6121, 1985,
U. S. Department of Energy
.
32.
Singh
,
B. N.
,
Horsewell
,
A.
, and
Toft
,
P.
, “
Effects of Neutron Irradiation on Microstructure and Mechanical Properties of Pure Iron
,”
J. Nucl. Mater.
, Vols.
271–272
,
1999
, pp. 97–101.
33.
Farrell
,
K.
,
Stoller
,
R. E.
,
Jung
,
P.
, and
Ullmaier
,
H.
, “
Hardening of ferritic Alloys at 288 °C by Electron Irradiation
,”
J. Nucl. Mater.
, Vol.
279
,
2000
, pp. 77–83.
34.
Zinkle
,
S. J.
and
Singh
,
B. N.
, “
Microstructure of Neutron-irradiated Iron Before and After Tensile Deformation
,”
J. Nucl. Mater.
, Vol.
351
,
2006
, pp. 269–284.
35.
Abe
,
Y.
,
Jitsukawa
,
S.
,
Okubo
,
N.
,
Matsui
,
H.
, and
Tsukada
,
T.
, “
Cluster Dynamics Simulation on Microstructure Evolution of Austenitic Stainless Steel and α-iron Under Cascade Damage Condition,”
25th Symposium on Effects of Radiation on Nuclear Materials, Anaheim
,
CA
, June 15,
2011
,
ASTM International
,
West Conshohocken, PA
. 587.
36.
Jitsukawa
,
S.
and
Hojo
,
K.
, “
Effect of Temperature and Flux Change on the Behavior of Radiation Induced Dislocation Loops in Pure Aluminum
,”
J. Nucl. Mater.
, Vols.
212–215
,
1994
, pp. 221–225.
37.
Dubinko
,
V. I.
,
Abyzov
,
A. S.
, and
Turkin
,
A. A.
, “
Numerical Evaluation of the Dislocation Loop Bias
,”
J. Nucl. Mater.
, Vol.
336
,
2005
, pp. 11–21.
38.
Foreman
,
A. J. E.
, “
The Preferential Trapping of Interstitial Atoms at Dislocations as a Mechanism for Void Growth During Irradiation Damage,”
Report No. AERE-R7629,
UKAEA
,
1974
, U.K.
39.
Russel
,
K. C.
and
Brown
,
L. M.
, “
A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Iron-Copper System
,”
Acta Metall.
, Vol.
20
,
1972
, pp. 969–974.
40.
Odette
,
G. R.
and
Frey
,
D.
, “
Development of Mechanical Property Correlation Methodology for Fusion Environments
,”
J. Nucl. Mater.
, Vols.
85–86
,
1979
, pp. 817–822.
41.
Garner
,
F. A.
,
Hamilton
,
M. L.
,
Panayatou
,
N. F.
, and
Johnson
,
G. D.
, “
The Microstructural Origins of Yield Strength Changes in AISI 316 During Fission or Fusion Irradiation
,”
J. Nucl. Mater.
, Vols.
103–104
,
1981
, pp. 803–808.
42.
Simmons
,
R. L.
and
Hulbert
,
L. A.
, “
Correlation of Yield Strength With Irradiation=Induced Microstructure in AISI Type 316 Stainless Steel
,”
ASTM STP 870
,
ASTM International
,
West Conshohocken, PA
,
1985
, pp. 820–839.
43.
Odette
,
G. R.
and
Lucas
,
G. E.
, “
The Effects of Intermediate Temperature Irradiation on the Mechanical Behavior of 300-series Austenitic Stainless Steels
,”
J. Nucl. Mater.
, Vols.
179–181
,
1991
, pp. 572–576.
44.
Grossbeck
,
M. L.
,
Maziasz
,
P. J.
, and
Rowcliffe
,
A. F.
, “
Modeling of Strengthening Mechanisms in Irradiated Fusion Reactor First Wall Alloys
,”
J. Nucl. Mater.
, Vols.
191–194
,
1982
, pp. 808–812.
45.
Lucas
,
G. E.
, “
The Evolution of Mechanical Property Change in Irradiated Austenitic Stainless Steels
,”
J. Nucl. Mater.
, Vol.
206
,
1993
, pp. 287–305.
46.
Hashimoto
,
N.
,
Wakai
,
E.
, and
Robertson
,
J. P.
, “
Relationship Between Hardening and Damage Structure in Austenitic Stainless Steel 316LN Irradiated at Low Temperature in the HFIR
,”
J. Nucl. Mater.
, Vol.
273
,
1999
, pp. 95–101.
47.
Hashimoto
,
N.
,
Byun
,
T. S.
,
Farrell
,
K.
, and
Zinkle
,
S. J.
, “
Deformation Microstructure of Neutron-Irradiatedpure Polycrystalline Metals
,”
J. Nucl. Mater.
, Vols.
329–333
,
2004
, pp. 947–952.
48.
Hammond
,
J. P.
,
Ratcliff
,
L. T.
,
Brinkman
,
C. R.
,
Moyer
,
M. W.
, and
Nester
,
C. W.
 Jr
, “
Dynamic and Static Measurements of Elastic Constants With Data on 2 I/4 Cr-1 Mo Steel, Types 304 and 316 Stainless Steels, and Alloy 800H,”
Report No. ORNL-5442,
ORNL
,
1979
, U.S. Department of Energy.
49.
Taylor
,
G. I.
, “
Plastic Strain in Metals
,”
J. Inst. Met.
, Vol.
62
,
1938
, pp. 307–324.
50.
Stoller
,
R. E.
and
Zinkle
,
S. J.
, “
On the Relationship Between Uniaxial Yield Strength and Resolved Shear Stress in Polycrystalline Materials
,”
J. Nucl. Mater.
, Vols.
283–287
,
2000
, pp. 349–352.
51.
Lee
,
D.
and
Zaverl
,
F.
, “
The Influence of Material Parameters on Nonuniform Plastic Flow in Simple Tension
,”
Acta Metall.
, Vol.
28
,
1980
, pp. 1415–1426.
52.
ASTM E693–94,
1994
, “
Standard Practice for Characterizing Neutron Exposure in Iron and Low Alloy Steels in Terms of Displacements per Atom (dpa)
,”
Annual Book of ASTM Standards
, Vol.
03.01
,
ASTM International
,
West Conshohocken, PA
, pp. 1–8.
53.
Yaegashi
,
K.
, “
Dependence of Magnetic Susceptibility on Dislocation Density in Tensile Deformed Iron and Mn-steel
,”
ISIJ Int.
, Vol.
47
, No.
2
,
2007
, pp. 327–332.
54.
Oka
,
H.
, private communication.
55.
Dodd
,
B.
and
Bai
,
Y.
,
Ductile Fracture and Ductility
,
Academic
,
San Diego
,
1987
, pp. 199.
56.
Suzuki
,
K.
,
Jitsukawa
,
S.
,
Okubo
,
N.
, and
Takada
,
F.
, “
Intensely Irradiated Steel Components: Plastic and Fracture Properties, and a New Concept of Structural Design Criteria for Assuring the Structural Integrity
,”
Nucl. Eng. Des.
, Vol.
240
,
2010
, pp. 1290–1305.
57.
Milne
,
I.
,
Ainsworth
,
R. A.
,
Dowling
,
A. R.
, and
Stewart
,
A. T.
, “
Assessment of the Integrity of Structures Containing Defects
,”
Int. J. Pressure Vessels Piping
, Vol.
32
,
1988
, pp. 3–104.
58.
Brown
,
W. R.
, Jr.
and
Slawley
,
J. E.
, “
Plain Strain Crack Toughness Testing of High Strength Metallic Materials
,”
ASTM STP 410
,
ASTM International
,
West Conshohocken, PA
,
1967
, pp. 1–66.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal