Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Plastic Pipe and Fittings: Past, Present, and Future
By
Thomas S. Walsh
Thomas S. Walsh
1
Walsh Consulting Services
,
Houston, TX
Search for other works by this author on:
ISBN:
978-0-8031-7514-3
No. of Pages:
410
Publisher:
ASTM International
Publication date:
2011

Plastic drainage pipes are an essential component of modern engineered barrier systems used in municipal and hazardous solid waste landfills. The design and performance of plastic pipes in these applications is significantly different than conventional municipal sewers and culverts. For example, the plastic pipe may be surrounded by very coarse gravel backfill which results in additional local bending stresses from the irregular loading and support for the pipe. These plastic pipes also experience local stress concentrations from the perforations required to collect fluid. Both of these factors are exacerbated by potentially large overburden pressures acting above the pipe. They must also perform their function while being exposed to chemicals in landfill leachate for long periods of time and at temperatures significantly larger than those for conventional sewers and culverts. The influence of coarse gravel backfill, large perforations, large overburden stresses, chemical exposure and elevated temperatures on the long-term performance of plastic drainage pipes is examined.

1.
Rowe
,
R. K.
,
Quigley
,
R. M.
,
Brachman
,
R. W. I.
, and
Booker
,
J. R.
,
Barrier Systems for Waste Disposal Facilities
,
Taylor & Francis/Spon
,
London
,
2004
, p. 579.
2.
Fleming
,
I. R.
,
Rowe
,
R. K.
, and
Cullimore
,
D. R.
, “
Field Observations of Clogging in a Landfill Leachate Collection System
,”
Can. Geotech. J.
, Vol.
36
, No.
4
,
1999
, pp. 289–296.
3.
Ontario Ministry of the Environment
,
Landfill Standards: A Guideline on the Regulatory and Approval Requirements for the New or Expanding Landfilling Sites, Ontario Regulation 232/98
,
1998
,
Queen's Printer for Ontario
,
Toronto
.
4.
Brachman
,
R. W. I.
,
Moore
,
I. D.
, and
Rowe
,
R. K.
, “
Local Strain on a Leachate Collection Pipe
,”
Can. J. Civ. Eng.
, Vol.
27
,
2000
, pp. 1273–1285.
5.
Cowland
,
J. W.
, “
The use of Geosynthetics in Landfills in Hong Kong
,”
Proceedings of the 2nd Asian Geosynthetics Conference, Kuala Lumpur, Malaysia, May 29–31
,
2000
, pp. 111–117.
6.
Giroud
,
J. P.
,
Palmer
,
B.
, and
Dove
,
J. E.
, “
Calculation of Flow Velocity in Pipes as a Function of Flow Rate
,”
Geosynthet. Int.
, Vol.
7
, No.
4–6
,
2000
, pp. 583–600.
7.
Dhar
,
A. S.
and
Moore
,
I. D.
, “
Liner Buckling in Profiled Polyethylene Pipes
,”
Geosynthet. Int.
, Vol.
8
, No.
4
,
2001
, pp. 303–326.
8.
Panu
,
U. S.
and
Filice
,
A.
, “
Techniques of Flow Rates into Draintubes with Circular Perforations
,”
J. Hydrol.
, Vol.
137
,
1992
, pp. 57–72.
9.
Cedergren
,
H. R.
,
Seepage, Drainage and Flow Nets
, 3rd ed.,
John Wiley & Sons
,
New York
,
1989
.
10.
Brachman
,
R. W. I.
and
Krushelnitzky
,
R. P.
, “
Stress Concentrations Around Circular Holes in Perforated Drainage Pipes
,”
Geosynthet. Int.
, Vol.
9
, No.
2
,
2002
, pp. 189–213.
11.
Hoeg
,
K.
, “
Stresses Against Underground Structural Cylinders
,”
ASCE J. Soil Mech. Found. Divi.
, Vol.
94
, No.
4
,
1968
, pp. 833–858.
12.
Moore
,
I. D.
, “
Buried Pipes and Culverts
,”
Geotechnical and Geoenvironmental Engineering Handbook
,
Rowe
R. K.
, Ed.,
Kluwer Academic Publishers
,
London
,
2001
, pp. 541–567.
13.
Brachman
,
R. W. I.
,
Moore
,
I. D.
, and
Rowe
,
R. K.
, “
The Performance of a Laboratory Facility for Evaluating the Structural Response Small Diameter Buried Pipes
,”
Can. Geotech. J.
, Vol.
38
, No.
2
,
2001
, pp. 260–275.
14.
Brachman
,
R. W. I.
and
Krushelnitzky
,
R. P.
, “
Response of a Landfill Drainage Pipe Buried in a Trench
,”
Can. Geotech. J.
, Vol.
42
, No.
3
,
2005
, pp. 752–762.
15.
Zhang
,
C.
and
Moore
,
I. D.
, “
Nonlinear Mechanical Response of High-density Polyethylene. Part I: Experimental Investigation and Model Evaluation
,”
Polym. Eng. Sci.
, Vol.
37
, No.
2
,
1997
, pp. 404–413.
16.
Zhang
,
C.
and
Moore
,
I. D.
, “
Nonlinear Mechanical Response of High-Density Polyethylene. Part II: Uniaxial Constitutive Modeling
,”
Polym. Eng. Sci.
, Vol.
37
, No.
2
,
1997
, pp. 414–420.
17.
Brachman
,
R. W. I.
, “
Mechanical Performance of Landfill Leachate Collection Pipes
,” ∘Ph.D. thesis, Faculty of Engineering Science,
The Univ. of Western Ontario
, London, Ontario, Canada,
1999
.
18.
McGrath
,
T. J.
,
Moore
,
I. D.
, and
Hsuan
,
G. Y.
, “
Updated Test and Design Methods for Thermoplastic Pipe
,” NCHRP Report No. 631,
Transportation Research Board
,
2009
, WA, D.C.
19.
Krushelnitzky
,
R. P.
, Investigation of Physical, “
Temperature and Chemical Effects on the Short Term and Long Term Performance of High Density Polyethylene Pipe
,” ∘Ph.D. thesis,
Dept. of Civil Engineering, Queen's Univ.
, Kingston, Ontario, Canada,
2006
.
20.
Zekkos
,
D.
,
Bray
,
J. D.
,
Kavazanjian
,
E.
, Jr.
,
Matasovic
,
N.
,
Rathje
,
E. M.
,
Riemer
,
M. F.
, and
Stokoe
,
K. H.
 II
, “
Unit Weight of Municipal Solid Waste
,”
ASCE J. Geotech. Geoenv. Eng.
, Vol.
132
, No.
10
,
2006
, pp. 1250–1261.
21.
Krushelnitzky
R. P.
and
Brachman
R. W. I.
, “
Measured Deformations and Calculated Stresses of High-Density Polyethylene Pipes Under Very Deep Burial
,”
Can. Geotech. J.
, Vol.
46
, No.
6
,
2009
, pp. 650–664.
22.
Selig
,
E. T.
, “
Soil Properties for Plastic Pipe Installations
."
Buried Plastic Pipe Technology, ASTM STP 1093
,
Buczala
G. S.
and
Cassady
M. J.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1990
, pp. 141–158.
23.
Janson
,
L.
, “
Plastics Pipes- How Long Can They Last?
" Report No. 4 from the Kontrollradet for Plasttror Council, KP Council,
1996
, pp. 39.
24.
Rowe
,
R. K.
,
Islam
,
M. Z.
, and
Hsuan
,
Y. G.
, “
Leachate Chemical Composition Effects on OIT Depletion in HDPE Geomembranes
,”
Geosynthet. Int.
, Vol.
15
, No.
2
,
2008
, pp.136–151.
25.
Hsuan
,
Y. G.
and
Koerner
,
R. M.
, “
Antioxidant Depletion Lifetime in High Density Polyethylene Geomembranes
,”
ASCE J. Geotech. Geoenv. Eng.
, Vol.
124
, No.
6
,
1998
, pp. 532–541.
26.
Krushelnitzky
R. P.
and
Brachman
R.W. I.
, “
Antioxidant Depletion in High-Density Polyethylene Pipes Exposed to Synthetic Leachate and Air
,”
Geosynthet. Int.
, Vol.
18
, No.
2
,
2011
, pp. 63–73.
27.
ASTM Standard E794-06, “
Standard Test Method for Melting and Crystallization Temperatures by Thermal Analysis
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2006
.
28.
ASTM Standard D3895-07, “
Standard Test Method for Melting and Crystallization Temperatures by Thermal Analysis
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2007
.
29.
ASTM Standard D5885-06, “
Standard Test Method for Melting and Crystallization Temperatures by Thermal Analysis
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2006
.
30.
Rowe
,
R. K.
,
Rimal
,
S.
, and
Sangam
,
H. P.
, “
Ageing of HDPE Geomembrane Exposed to Air, Water and Leachate at Different Temperatures
,”
Geotext. Geomembr.
, Vol.
27
, No.
2
,
2009
, pp. 131–151.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal