Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 16th International Symposium
By
Magnus Limbäck
Magnus Limbäck
Chairman and JAI Guest Editor
1
Westinghouse Electric Sweden
Search for other works by this author on:
Pierre Barbéris
Pierre Barbéris
JAI Guest Editor
2
Areva/Cezus Research Centre
,
Ugine,
FR
Search for other works by this author on:
ISBN:
978-0-8031-7515-0
No. of Pages:
1112
Publisher:
ASTM International
Publication date:
2012

Oxygen distribution in the rod cladding tubes during a Loss of Coolant Accident (LOCA) situation is known to play a key role regarding the post-quench mechanical properties of fuel rods. Analytical solutions of the diffusion equations in the complex multilayer and multiphase systems describing the cladding material tube during high temperature oxidation are limited to stationary isothermal conditions. To address the problem of non-stationary transient LOCA situations, a numerical tool (named DIFFOX) has been developed. In the first part, the main assumptions and main features of the code are described. In parallel to the code development, an experimental program has been launched to provide a validation database as well as to input data for improvement of the code models. Zircaloy-4 cladding samples have been pre-oxidized at low temperature then vacuum annealed or steam oxidized at high temperature. Oxygen distribution profiles are investigated by Electron Probe Microanalysis. The ability of the code to describe the chemical reduction of the pre-oxide layer and oxygen diffusion into the metal during high temperature annealing is demonstrated. Regarding high temperature steam oxidation, the pre-oxide layers are observed to be either protective or not on a same given sample. While a good code to experimental data agreement is obtained in the first case, the growing of a high temperature oxide underneath the pre-oxide is not well reproduced by the code. The effect of hydrogen has also been investigated by performing small scale oxidation tests on 600 wppm hydrogen charged Zy-4 cladding. Samples have been long-term annealed for homogenization after oxidation. The main purpose of these experiments is to provide quantitative data on the modification of the α/α+β and α+β/β transus of the Zy4-O pseudo binary phase diagram induced by the presence of hydrogen. A variation of the transus locations deduced from these experiments is proposed.

1.
Barré
,
F.
,
Grandjean
,
C.
,
Petit
,
M.
, and
Arreghini
,
F.
, “
Fuel Behavior Under LOCA and RIA and Its Implication on the Current Safety Criteria
,”
Eurosafe Meeting
,
Brussels, Belgium
,
2009
, European TSO Network.
2.
Sawatsky
,
A.
, “
A Proposed Criterion for the Oxygen Embrittlement of Zircaloy-4 Fuel Cladding
,”
Zirconium in the Nuclear Industry: 4th International Symposium, ASTM STP 681
,
Schemel
J. H.
and
Papazoglou
T. P.
, Eds.,
1979
,
ASTM International
,
West Conshohocken, PA
.
3.
Chung
,
H. M.
,
Garde
,
A. M.
, and
Kassner
,
T. F.
, “
Mechanical Properties of Zircaloy Containing Oxygen
,” Report No. ANL-77–10,
Argonne National Laboratory
, Argonne, IL,
1976
.
4.
Brachet
,
J. C.
,
Portier
,
L.
,
Forgeron
,
T.
,
Hivroz
,
J.
,
Hamon
,
D.
,
Guilbert
,
T.
,
Bredel
,
T.
,
Yvon
,
P.
,
Mardon
,
J. P.
, and
Jacques
,
P.
, “
Influence of Hydrogen Content on the a/b Phase Transformation and on the Thermal-Mechanical Behavior of Zy-4, M4 and M5 Alloys During the First Phase of LOCA Transient
,”
Zirconium in the Nuclear Industry: 13th International Symposium, ASTM STP 1423
,
Annecy, France
,
2001
,
ASTM International
,
West Conshohocken, PA
.
5.
Brachet
,
J. C.
,
Vandenberghe-Maillot
,
V.
,
Portier
,
L.
,
Gilbon
,
D.
,
Lesbros
,
A.
,
Waeckel
,
N.
, and
Mardon
,
J.-P.
, “
Hydrogen Content, Preoxidation, and Cooling Scenario Effects on Post-Quench Microstructure and Mechanical Properties of Zircaloy-4 and M5 Alloys in LOCA Conditions
,”
Zirconium in Nuclear Industry: 15th International Symposium, ASTM STP 1505
,
Sunriver, OR
,
2008
,
ASTM International
,
West Conshohocken, PA
.
6.
Vrtilkova
,
V.
, “
Review of Recent Work at UJP PRAHA on the LOCA Embrittlement Criterion
,”
Sixth Plenary Meeting of the OECD/CSNI/SEGFSM
,
Paris, France
,
2005
, OECD, Paris, France.
7.
Waeckel
,
N.
, “
Fuel Safety Research at EDF
,”
FSRM Meeting
,
Tokai, Japan
,
2005
, JAEA, Tokai, Japan.
8.
Billone
,
M.
,
Yan
,
Y.
,
Burtseva
,
T.
, and
Daum
,
R.
, “
Cladding Embrittlement During Postulated Loss-of-Coolant Accidents
,” Report No. NUREG-CR-6967,
US-NRC
, Washington, D.C.,
2008
.
9.
DIFFOX Diffusion Code. (under development).
10.
Corvalán-Moya
,
C.
,
Desgranges
,
C.
,
Toffolon-Masclet
,
C.
,
Servant
,
C.
, and
Brachet
,
J. C.
, “
Numerical Modeling of Oxygen Diffusion in the Wall Thickness of Low-Tin Zircaloy-4 Fuel Cladding Tube During High Temperature (1100–1250 C) Steam Oxidation
,”
J. Nucl. Mater.
, Vol.
400
,
2010
, pp. 196–204.
11.
Hofmann
,
P.
,
Neitzel
,
H. J.
, and
Garcia
,
E. A.
, “
Chemical Interactions of Zircaloy-4 Tubing with UO2 Fuel and Oxygen at Temperatures Between 900 and 2000°C (Experiments and PECLOX Code)
,” Report No. KfK 4422,
Kernforschungszentrum Karhsruhe
, Germany,
1988
.
12.
Pawel
,
R. E.
, “
Zirconium Metal-Water Oxidation Kinetics III.-Oxygen Diffusion in Oxide and Alpha Zircaloy Phases
,” Report No. ORNL/NUREG-5,
US-NRC
, Washington, D.C.,
1976
.
13.
Denis
,
A.
and
Garcia
,
E.
, “
Diffusion in a Semi-Infinite System with a Moving Interface Considering Solvent Density Change: Application to the Oxidation of Zirconium
,”
J. Nucl. Mater.
, Vol.
96
,
1981
, pp. 127–140.
14.
Debuigne
,
J.
and
Lehr
,
P.
,
Mem. Sci. Rev. Metallurg.
Vol.
60
,
1963
, p. 911.
15.
Iglesias
,
F. C.
,
Duncan
,
D. B.
,
Sagat
,
S.
, and
Sills
,
H. E.
, “
Verification of the FROM Model for Zircaloy Oxidation During High Temperature Transient
,”
J. Nucl. Mater.
, Vol.
130
,
1985
, pp. 36–44.
16.
Perkins
,
R. A.
, “
Oxygen Diffusion in a-Zircaloy
,”
J. Nucl. Mater.
, Vol.
68
,
1977
, pp. 148–160.
17.
Abriata
,
J. P.
,
Garcés
,
J.
, and
Versaci
,
R.
, “
The O-Zr (Oxygen-Zirconium) System
,”
Bull. Alloy Phase Diagrams
, Vol.
7
(
2
),
1986
, pp. 116–124.
18.
Chung
,
H. M.
and
Kassner
,
T. F.
, “
Pseudo-Binary Zircaloy-Oxygen Phase Diagram
,”
J. Nucl. Mater.
, Vol.
84
,
1979
, pp. 327–339.
19.
Leistikow
,
S.
and
Schanz
,
G.
, “
Oxidation Kinetics and Related Phenomena of Zircaloy-4 Fuel Cladding Exposed to High Temperature Steam and Hydrogen-Steam Mixtures Under PWR Accident Conditions
,”
Nucl. Eng. Des.
, Vol.
103
,
1987
, pp. 65–84.
20.
Brachet
,
J. C.
,
Pelchat
,
J.
,
Hamon
,
D.
, and
Maury
,
R.
, “
Mechanical Behaviour at Room Temperature and Metallurgical Study of Low-Tin Zy-4 and M5™ (Zr-NbO) Alloys After Oxidation at 1100°C and Quenching
,”
Proceedings of the Technical Committee Meeting
,
Halden, Norway
,
2001
,
Institutt for Energiteknikk
,
Halden, Norway
.
21.
Hózer
,
Z.
,
Gyori
,
C.
,
Matus
,
L.
, and
Horváth
,
M.
, “
Ductile-to-Brittle Transition of Oxidised Zircaloy-4 and E110 Claddings
,”
J. Nucl. Mater.
, Vol.
373
(
1–3
),
2008
, pp. 415–423.
22.
Kawasaki
,
S.
,
Furuta
,
T.
, and
Suzuki
,
M.
, “
Oxidation of Zircaloy-4 Under High Temperature Steam Atmosphere and Its Effect on Ductility of Cladding
,”
J. Nucl. Sci. Technol.
, Vol.
15
(
8
),
1978
, pp. 589–596.
23.
Ozawa
,
M.
,
Takahashi
,
T.
,
Homma
,
T.
, and
Goto
,
K.
, “
Behavior of Irradiated Zircaloy-4 Fuel Cladding Under Simulated LOCA Conditions
,”
Zirconium in the Nuclear Industry: 12th International Symposium, ASTM STP 1354
,
Sabol
G. P.
and
Bradley
E.R.
and
Sabol
G. P.
, Eds.,
Toronto, Canada
,
2000
,
ASTM International
,
West Conshohocken, PA
.
24.
Bossis
,
P.
,
Pêcheur
,
D.
,
Hanifi
,
K.
,
Thomazet
,
J.
, and
Blat
,
M.
, “
Comparison of the High Burn-Up Corrosion on M5 and Low Tin Zircaloy-4, Zirconium in the Nuclear Industry, 14th International Symposium
,”
ASTM Spec. Tech. Publ.
, Vol.
1467
,
2006
, pp. 494–524.
25.
Yilmazbayhan
,
A.
,
Breval
,
E.
,
Motta
,
A. T.
, and
Comstock
,
R. J.
, “
Transmission Electron Microscopy Examination of Oxide Layers Formed on Zr Alloys
,”
J. Nucl. Mater.
, Vol.
349
(
3
),
2006
, pp. 265–281.
26.
Busser
,
V.
, “
Mécanismes d'endommagement de la couche d'oxyde des gaines de crayons combustible en situation accidentelle de type RIA
,” PhD Thesis,
Institut National des Sciences Appliquées
, Lyon, France,
2009
.
27.
Bouffioux
,
P.
and
Legras
,
L.
, “
Effect of Hydriding on the Residual Cold Work Recovery and Creep of Zircaloy-4 Cladding Tubes
,”
Light Water Reactor Fuel Performance
, Park City,
2000
.
28.
Erickson
,
W. H.
and
Hardie
,
D.
, “
The Influence of Alloying Elements on the Terminal Solubility of Hydrogen in a-Zirconium
,”
J. Nucl. Mater.
, Vol.
13
(
2
),
1964
, pp. 254–262.
29.
Yamanaka
,
S.
,
Tanaka
,
T.
, and
Miyake
,
M.
, “
Effect of Oxygen on Hydrogen Solubility in Zirconium
,”
J. Nucl. Mater.
, Vol.
167
,
1989
, pp. 231–237.
30.
Moalem
,
M.
and
Olander
,
D. R.
, “
The High-Temperature Solubility of Hydrogen in Pure and Oxygen-Containing Zircaloy
,”
J. Nucl. Mater.
, Vol.
178
,
1991
, pp. 61–72.
31.
Stern
,
A.
, “
Comportements métallurgique et mécanique des matériaux de gainage du combustible REP oxydésà haute temperature
,” PhD Thesis,
Ecole des Mines de Paris
, France,
2007
.
32.
Blat
,
M.
and
Noel
,
D.
, “
Detrimental Role of Hydrogen on the Corrosion Rate of Zirconium Alloys
,”
11th International Conference on Zirconium in the Nuclear Industry, ASTM STP 1295
,
Bradley
E. R.
and
Sabol
G. P.
, Eds.,
Garmisch-Partenkirchen, Germany
,
1995
,
ASTM International
,
West Conshohocken, PA
.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal