Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 16th International Symposium
By
Magnus Limbäck
Magnus Limbäck
Chairman and JAI Guest Editor
1
Westinghouse Electric Sweden
Search for other works by this author on:
Pierre Barbéris
Pierre Barbéris
JAI Guest Editor
2
Areva/Cezus Research Centre
,
Ugine,
FR
Search for other works by this author on:
ISBN:
978-0-8031-7515-0
No. of Pages:
1112
Publisher:
ASTM International
Publication date:
2012

Hydrogen ingress into zirconium alloy fuel cladding in light water reactors can degrade cladding performance as a result of the formation of brittle hydrides. In service, hydrides normally precipitate in the circumferential direction and are homogeneously distributed through the cladding thickness in ideal cases. However, temperature and stress gradients in the cladding can promote hydrogen redistribution. This hydrogen redistribution is responsible for the formation of hydride rims, dissolution, and reorientation of hydride precipitates and for the formation of brittle hydrides at stress concentration locations, all of which can reduce cladding resistance to failure. Thus, it is crucial to understand the kinetics of hydride dissolution and precipitation under load and at temperature. Studies of hydrogen behavior in zirconium alloys are normally performed post facto, which causes them to suffer both from a scarcity of data points and from the confounding effects of studying hydrides at room temperature that might be dissolved at higher temperature. In the current study, we have used synchrotron radiation diffraction to study the kinetics of hydride precipitation and dissolution in situ (under load and at temperature). Samples of hydrided Zircaloy-4 were examined in transmission by using 80 keV synchrotron radiation while undergoing heating and cooling in a furnace. Temperatures ranged from 20 to 550C, and loads from 75 to 100 MPa were applied. The hydrides dissolved and reprecipitated in a different orientation when sufficiently high loads were applied. Through careful study of the intensities and full-width half maxima of the diffraction peaks as a function of time, load, and temperature, it was possible to identify the characteristic diffraction patterns for the reoriented hydrides so that the kinetics of dissolution, reprecipitation, and orientation of the hydrides could be followed. The analysis of the diffraction patterns allowed a detailed understanding of the kinetics of hydride evolution under temperature and stress, as presented in this work.

1.
Coleman
,
C. E.
and
Hardie
,
D.
, “
The Hydrogen Embrittlement of [Alpha]-Zirconium—A Review
,”
J. Less-Common Met.
, Vol.
11
(
3
),
1966
, pp. 168–185.
2.
International Center for Diffraction Data, The Powder Diffraction File, Newton Square, PA,
2006
.
3.
Bradbrook
,
J. S.
,
Lorimer
,
G. W.
, and
Ridley
,
N.
, “
The Precipitation of Zirconium Hydride in Zirconium and Zircaloy-2
,”
J. Nucl. Mater.
, Vol.
42
(
2
),
1972
, pp. 142–160.
4.
Beck
,
R. L.
, “
Zirconium-Hydrogen Phase System
,”
Transactions of the ASME
, Vol.
55
,
1962
, pp. 542–555.
5.
Perovic
,
V.
,
Weatherly
,
G. C.
, and
Simpson
,
C. J.
, “
Hydride Precipitation in [a]/[b] Zirconium Alloys
,”
Acta Metall.
, Vol.
31
(
9
),
1983
, pp. 1381–1391.
6.
Chung
,
H. M.
,
Daum
,
R. S.
,
Hiller
,
J. M.
, and
Billone
,
M. C.
, “
Characteristics of Hydride Precipitation in Spent-Fuel Cladding
,”
Zirconium in the Nuclear Industry: 13th International Symposium, ASTM STP 918
,
2002
,
ASTM International
,
West Conshohocken, PA
, pp. 78–101.
7.
Ells
,
C. E.
, “
Hydride Precipitates in Zirconium Alloys (A Review)
,”
J. Nucl. Mater.
, Vol.
28
(
2
),
1968
, pp. 129–151.
8.
Kearns
,
J. J.
and
Woods
,
C. R.
, “
Effect of Texture, Grain Size, and Cold Work on the Precipitation of Oriented Hydrides in Zircaloy Tubing and Plate
,”
J. Nucl. Mater.
, Vol.
20
(
3
),
1966
, pp. 241–261.
9.
Singh
,
R. N.
,
Kishore
,
R.
,
Singh
,
S. S.
,
Sinha
,
T. K.
, and
Kashyap
,
B. P.
, “
Stress-Reorientation of Hydrides and Hydride Embrittlement of Zr-2.5 wt% Nb Pressure Tube Alloy
,”
J. Nucl. Mater.
, Vol.
325
(
1
),
2004
, pp. 26–33.
10.
Hardie
,
D.
and
Shanahan
,
M. W.
, “
Stress Reorientation of Hydrides in Zirconium-2.5 % Niobium
,”
J. Nucl. Mater.
, Vol.
55
(
1
),
1975
, pp. 1–13.
11.
Kammenzind
,
B. F.
,
Berquist
,
B. M.
,
Bajaj
,
R.
,
Kreyns
,
P. H.
, and
Franklin
,
D. G.
, “
The Long-Range Migration of Hydrogen Through Zircaloy in Response to Tensile and Compressive Stress Gradients
,”
Zirconium in the Nuclear Industry: 12th International Symposium, ASTM STP 1354
,
2000
,
ASTM International
,
West Conshohocken, PA
, pp. 196–233.
12.
Daum
,
R. S.
,
Chu
,
Y. S.
, and
Motta
,
A. T.
, “
Identification and Quantification of Hydride Phases in Zircaloy-4 Cladding Using Synchrotron X-Ray Diffraction
,”
J. Nucl. Mater.
, Vol.
392
(
3
),
2009
, pp. 453–463.
13.
Kerr
,
M.
,
Daymond
,
M. R.
,
Holt
,
R. A.
,
Almer
,
J. D.
, and
Stafford
,
S.
, “
Observation of Growth of a Precipitate at a Stress Concentration by Synchrotron X-Ray Diffraction
,”
Scr. Mater.
, Vol.
62
(
6
),
2010
, pp. 341–344.
14.
Kerr
,
M.
,
Daymond
,
M. R.
,
Holt
,
R. A.
,
Almer
,
J. D.
,
Stafford
,
S.
, and
Colas
,
K. B.
, “
Fracture of a Minority Phase at a Stress Concentration Observed with Synchrotron X-Ray Diffraction
,”
Scr. Mater.
, Vol.
61
(
10
),
2009
, pp. 939–942.
15.
Turski
,
M.
,
Bouchard
,
P. J.
,
Steuwer
,
A.
, and
Withers
,
P. J.
, “
Residual Stress Driven Creep Cracking in AISI Type 316 Stainless Steel
,”
Acta Mater.
, Vol.
56
,
2008
, pp. 3598–3612.
16.
Daymond
,
M. R.
,
Young
,
M. L.
,
Almer
,
J. D.
, and
Dunand
,
D. C.
, “
Strain and Texture Evolution During Mechanical Loading of a Crack Tip in Martensitic Shape-Memory NiTi
,”
Acta Mater.
, Vol.
55
(
3929
),
2007
, pp. 3929–3942.
17.
Pierron
,
O. N.
,
Koss
,
D. A.
,
Motta
,
A. T.
, and
Chan
,
K. S.
, “
The Influence of Hydride Blisters on the Fracture of Zircaloy-4
,”
J. Nucl. Mater.
, Vol.
322
(
1
),
2003
, pp. 21–35.
18.
Douglass
,
D. L.
, “
The Metallurgy of Zirconium
,”
Atomic Energy Review
,
Turkov
Z. I.
, Ed.,
International Atomic Energy Agency
,
Vienna, Austria
,
1971
.
19.
Raynaud
,
P. A. C.
, Crack Growth Through the Thickness of Thin-Sheet Hydrided Zircaloy-4, Ph.D. Thesis,
The Pennsylvania State University
, University Park,
2009
.
20.
McMinn
,
A.
,
Darby
,
E. C.
, and
Schofield
,
J. S.
The Terminal Solid Solubility of Hydrogen in Zirconium Alloys
,”
Zirconium in the Nuclear Industry: 12th International Symposium, ASTM STP 1354
,
2000
,
ASTM International
,
West Conshohocken, PA
, pp. 173–195.
21.
Haeffner
,
D. R.
,
Almer
,
J. D.
, and
Lienert
,
U.
, “
The Use of High Energy X-Rays from the Advanced Photon Source to Study Stresses in Materials
,”
Mater. Sci. Eng., A
, Vol.
399
(
1–2
),
2005
, pp. 120–127.
22.
Larson
,
A. C.
and Von
Dreele
,
R. B.
, General Structure Analysis System (GSAS),
Los Alamos National Laboratory
, Los Alamos, NM, Report LAUR 86-748,
2000
.
23.
Snyder
,
R. L.
,
Fiala
,
J.
, and
Bunge
,
H.
,
Defect and Microstructure Analysis by Diffraction
,
International Union of Crystallography Monographs on Crystallography, Oxford University Press
,
New York, NY
,
1999
.
24.
Puls
,
M. P.
,
Shi
,
S.-Q.
, and
Rabier
,
J.
, “
Experimental Studies of Mechanical Properties of Solid Zirconium Hydrides
,”
J. Nucl. Mater.
, Vol.
336
(
1
),
2005
, pp. 73–80.
25.
Yamanaka
,
S.
,
Yamada
,
K.
,
Kurosaki
,
K.
,
Uno
,
M.
,
Takeda
,
K.
,
Anada
,
H.
,
Matsuda
,
T.
, and
Kobayashi
,
S.
, “
Characteristics of Zirconium Hydride and Deuteride
,”
J. Alloys Compd.
, Vol.
330–332
,
2002
, pp. 99–104.
26.
Kerr
,
M.
,
Daymond
,
M. R.
,
Holt
,
R. A.
, and
Almer
,
J. D.
, “
Strain Evolution of Zirconium Hydride Embedded in a Zircaloy-2 Matrix
,”
J. Nucl. Mater.
, Vol.
380
(
1–3
),
2008
, pp. 70–75.
27.
Yamanaka
,
S.
,
Yoshioka
,
K.
,
Uno
,
M.
,
Katsura
,
M.
,
Anada
,
H.
,
Matsuda
,
T.
, and
Kobayashi
,
S.
, “
Thermal and Mechanical Properties of Zirconium Hydride
,”
J. Alloys Compd.
, Vol.
293–295
,
1999
, pp. 23–29.
28.
Massih
,
A. R.
and
Jernkvist
,
L. O.
, “
Stress Orientation of Second-Phase in Alloys: Hydrides in Zirconium Alloys
,”
Comput. Mater. Sci.
, Vol.
46
,
2009
, pp. 1091–1097.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal