Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 16th International Symposium
By
Magnus Limbäck
Magnus Limbäck
Chairman and JAI Guest Editor
1
Westinghouse Electric Sweden
Search for other works by this author on:
Pierre Barbéris
Pierre Barbéris
JAI Guest Editor
2
Areva/Cezus Research Centre
,
Ugine,
FR
Search for other works by this author on:
ISBN:
978-0-8031-7515-0
No. of Pages:
1112
Publisher:
ASTM International
Publication date:
2012

In an effort to better understand the role of second phase particles (SPPs) in the hydrogen uptake of zirconium alloys, four alloys and four heat treatments for each alloy were chosen to prepare specimens with different SPPs size distributions and area fractions. The hydrogen uptake performance of these specimens was investigated after autoclave testing in 400C/10.3 MPa steam. Results show that the hydrogen uptake is not always in a strict corresponding relationship with the corrosion resistance among the specimens, but it is closely related to the size, area fraction, and compositions of the SPPs. In the case of Zry-2 and Zry-4, the hydrogen uptake fraction (HUF) increased with increasing size and area fraction of the SPPs. The dependence was more notable for the Zry-2 than the Zry-4. In the case of N36 and N18, the HUF had only a slight variation with the size and area fraction of the SPPs. No matter which heat treatment was employed, the corrosion resistance of the N18 specimens was superior to the N36 specimens, but the HUF of the former was larger than that of the latter. These results clearly demonstrate that the effect of the size and area fraction of SPPs on the hydrogen uptake depends on the SPP compositions. Pressure-composition-temperature and kinetics of absorbing and desorbing hydrogen tests were conducted on Zr(Fe,Cr)2, Zr2(Fe,Ni), Zr(Nb,Fe)2, and β-Nb alloys (which may be found as SPPs in the four zirconium alloys tested) as well as on pure zirconium. Results show that Zr(Nb,Fe)2, Zr2(Fe,Ni), and Zr(Fe,Cr)2 alloys have a stronger reversible ability for hydrogen absorption and desorption than β-Nb alloy and pure zirconium. Based on the testing results, a model correlating the hydrogen uptake performance to the reversible ability of the SPPs to absorb and desorb hydrogen is proposed. The model can successfully explain the results.

1.
Kearns
,
J. J.
, “
Terminal Solubility and Partitioning of Hydrogen in the Alpha Phase of Zirconium, Zircaloy-2 and Zircaloy-4
,”
J. Nucl. Mater.
, Vol.
22
,
1967
, pp. 292–303.
2.
Cann
,
C. D.
and
Sexton
,
E. E.
, “
An Electron Optical Study of Hydride Precipitation and Growth at Crack Tips in Zirconium
,”
Acta Metall.
, Vol.
28
,
1980
, pp. 1215–1221.
3.
Zhou
,
B. X.
,
Zeng
,
S. K.
, and
Wang
,
S. X.
, “
In Situ Electron Microscopy Study on Precipitation of Zirconium Hydrides Induced by Strain and Stress in Zircaloy-2
,”
Acta Metall. Sin.
, Vol.
25
,
1989
, pp. A190–195.
4.
Perryman
,
E. C. W.
, “
Pickering Pressure Tube Cracking Experience
,”
Nucl. Energy
, Vol.
17
,
1978
, pp. 95–105.
5.
Simpson
,
C. J.
and
Ells
,
C. E.
, “
Delayed Hydrogen Embrittlement in Zr-2.5 wt % Nb
,”
J. Nucl. Mater.
, Vol.
52
,
1974
, pp. 289–295.
6.
Ploc
,
R. A.
, “
The Effect of Minor Alloying Elements on Oxidation and Hydrogen Pickup in Zr-2.5Nb
,”
Zirconium in the Nuclear Industry: 13th International Symposium, ASTM-STP-1423
,
Annecy, France
,
2002
,
ASTM International
,
West Conshohocken, PA
, pp. 297–310.
7.
Tägstrom
,
P.
,
Limbäck
,
M.
,
Dahlbäck
,
M.
,
Andersson
,
T.
, and
Pettersson
,
H.
, “
Effects of Hydrogen Pickup and Second-Phase Particle Dissolution on the In-Reactor Corrosion Performance of BWR Claddings
,”
Zirconium in the Nuclear Industry: 13th International Symposium, ASTM-STP-1423
,
Annecy, France
,
2002
,
ASTM International
,
West Conshohocken, PA
, pp. 96–118.
8.
Mardon
,
J. P.
,
Charquet
,
D.
, and
Senevat
,
J.
, “
Influence of Composition and Fabrication Process on Out-of-Pile and In-Pile Properties of M5 Alloy
,”
Zirconium in the Nuclear Industry: 12th International Symposium, ASTM-STP-1354
,
Toronto, Canada
,
2000
,
ASTM International
,
West Conshohocken, PA
, pp. 505–524.
9.
Sabol
,
G. P.
,
Kilp
,
G. R.
,
Balfour
,
M. G.
, and
Roberts
,
E.
, “
Development of a Cladding Alloy for Higher Burnup
,”
Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM-STP-1023
,
San Diego, CA
,
1989
,
ASTM International
,
West Conshohocken, PA
, pp. 227–244.
10.
Yao
,
M. Y.
,
Zhou
,
B. X.
,
Li
,
Q.
,
Liu
,
W. Q.
, and
Chu
,
Y. L.
, “
The Effect of Alloying Modifications on Hydrogen Uptake of Zirconium-Alloy Welding Specimens During Corrosion Tests
,”
J. Nucl. Mater.
, Vol.
350
,
2006
, pp. 195–201.
11.
Cox
,
B.
, “
A Mechanism for the Hydrogen Uptake Process in Zirconium Alloys
,”
J. Nucl. Mater.
, Vol.
264
,
1999
, pp. 283–294.
12.
Cox
,
B.
and
Wong
,
Y.-M.
, “
A Hydrogen Uptake Micro-Mechanism for Zr Alloys
,”
J. Nucl. Mater.
, Vol.
270
,
1999
, pp. 134–146.
13.
Cox
,
B.
, “
Hydrogen Uptake During Oxidation of Zirconium Alloys
,”
J. Alloys Compd.
, Vol.
256
,
1997
, pp. 244–246.
14.
Rudling
,
P.
and
Wikmark
,
G.
, “
A Unified Model of Zircaloy BWR Corrosion and Hydriding Mechanisms
,”
J. Nucl. Mater.
, Vol.
265
,
1999
, pp. 44–59.
15.
Elmoselhi
,
M. B.
, “
Hydrogen Uptake by Oxidized Zirconium Alloys
,”
J. Alloys Compd.
, Vol.
231
,
1995
, pp. 716–721.
16.
Khatamian
,
D.
, “
Hydrogen Diffusion in Oxides Formed on Surfaces of Zirconium Alloys
,”
J. Alloys Compd.
, Vols.
253–254
,
1997
, pp. 471–474.
17.
Barberis
,
P.
,
Ahlberg
,
E.
,
Simic
,
E.
,
Charquet
,
D.
,
Lemaignan
,
C.
,
Wikmark
,
G.
,
Dahlbäck
,
M.
,
Tägtström
,
P.
, and
Lehtinen
,
B.
, “
Role of the Second-Phase Particles in Zirconium Binary Alloys
,”
Zirconium in the Nuclear Industry: 13th International Symposium, ASTM-STP-1423
,
Annecy, France
,
2002
,
ASTM International
,
West Conshohocken, PA
, pp. 33–55.
18.
Lelièvre
,
G.
,
Tessier
,
C.
,
Iltis
,
X.
,
Berthier
,
B.
, and
Lefebvre
,
F.
, “
Impact of Intermetallic Precipitates on Hydrogen Distribution in the Oxide Layers Formed on Zirconium Alloys in a Steam Atmosphere: A 2D (3He,p)α Nuclear Analysis Study in Microbeam Mode
,”
J. Alloys Compd.
, Vol.
268
,
1998
, pp. 308–317.
19.
Hatano
,
H.
,
Hitaka
,
R.
,
Sugisaki
,
M.
, and
Hayashi
,
M.
, “
Influence of Size Distribution of Zr(Fe,Cr)2 Precipitates on Hydrogen Transport through Oxide Film of Zircaloy-4
,”
J. Nucl. Mater.
, Vol.
248
,
1997
, pp. 311–314.
20.
Hatano
,
Y.
,
Isobe
,
K.
,
Hitaka
,
R.
, and
Sugisaki
,
K.
, “
Role of Intermetallic Precipitates in Hydrogen Uptake of Zircaloy-2
,”
J. Nucl. Sci. Technol.
, Vol.
33
, No.
12
,
1996
, pp. 944–949.
21.
Ramasubramanian
,
N.
,
Billot
,
P.
, and
Yagnik
,
S.
, “
Hydrogen Evolution and Pickup During the Corrosion of Zirconium Alloys: A Critical Evolution of the Solid State and Porous Evolution Oxide Electrochemistry
,”
Zirconium in Nuclear Industry: 13th International Symposium, ASTM-STP-1423
,
Annecy, France
,
2002
,
ASTM International
,
West Conshohocken, PA
, pp. 222–244.
22.
Lim
,
B. H.
,
Hong
,
H. S.
, and
Lee
,
K. S.
, “
Measurement of Hydrogen Permeation and Absorption in Zirconium Oxide Scales
,”
J. Nucl. Mater.
, Vol.
312
,
2003
, pp. 134–140.
23.
Groβe
,
M.
,
Lehmann
,
E.
,
Steinbrück
,
M.
,
Kühne
,
G.
, and
Stuckert
,
J.
, “
Influence of Oxide Layer Morphology on Hydrogen Concentration in Tin and Niobium Containing Zirconium Alloys After High Temperature Steam Oxidation
,”
J. Nucl. Mater.
, Vol.
385
,
2009
, pp. 339–345.
24.
Ruding
,
P.
,
Lundblad-Vannesjö
,
K.
,
Vesterlund
,
G.
, and
Massih
,
A. R.
Influence of Second-Phase Particles of Zircaloy Corrosion in BWR Evironments
,”
Zirconium in the Nuclear Industry: Seventh International Symposium, ASTM-STP-939
,
Strasbourg, France
,
1987
,
ASTM International
,
West Conshohocken, PA
, pp. 292–306.
25.
Comstock
,
R. J.
,
Schoenberger
,
G.
, and
Sable
,
G. P.
, “
Influence of Processing Variables and Alloy Chemistry on the Corrosion Behavior of ZIRLO Nuclear Fuel Cladding
,”
Zirconium in the Nuclear Industry: 11th International Symposium, ASTM-STP-1295
,
Garmisch-Partenkirchen, Germany
,
1996
,
ASTM International
,
West Conshohocken, PA
, pp. 710–725.
26.
Li
,
Z. K.
,
Zhou
,
L.
, and
Zhao
,
W. J.
, “
Effect of Intermediate Annealing on Out-of Pile Corrosion Resistance of Zirconium-Based Alloy
,”
Rare Met. Mater. Eng.
, Vol.
30
, No.
1
,
2001
, pp. 52–54.
27.
Toffolon-Masclet
,
C.
,
Barberis
,
P.
,
Brachet
,
J.-C.
,
Mardon
,
J.-C.
, and
Legras
,
L.
, “
Study of Nb and Fe Precipitation in α-phase Temperature Range (400 to 500°C) in Zr-Nb-(Fe-Sn) Alloys
,”
Zirconium in the Nuclear Industry: 14th International Symposium, ASTM-STP-1467
,
Stockholm, Sweden
, June 13–17,
2004
,
ASTM International
,
West Conshohocken, PA
, pp. 81–101.
28.
Eucken
,
C. M.
,
Finden
,
P. T.
,
Trapp-Pritsching
,
S.
, and
Weidinger
,
H. G.
, “
Influence of Chemical Composition on Uniform Corrosion of Zirconium-Base Alloys in Auto-clave Tests
,”
Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM-STP-1023
,
San Diego, CA
,
1989
,
ASTM International
,
West Conshohocken, PA
, pp. 113–127.
29.
Sabol
,
G. P.
,
Comstock
,
R. J.
,
Weiner
,
R. A.
,
Larouere
,
P.
, and
Stanutz
,
R. N.
, “
In-Reactor Corrosion Performance of ZIRLO™ and Zircaloy-4
,”
Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM-STP-1245
,
Baltimore, MD
,
1994
,
ASTM International
,
West Conshohocken, PA
, pp. 724–744.
30.
Shaltiel
,
D.
,
Jacob
,
I.
, and
Davidov
,
D.
Hydrogen Absorption and Desprption Properties of AB2 Laves-Phase Pseudobinary Alloys
,”
J. Less-Common Met.
, Vol.
53
,
1977
, pp. 117–131.
31.
Qian
,
S. H.
,
1989
, “
Hysteresis and Sloping Plateau Pressures in Zr(Fex,Cr1x)2-H Systems
,” Ph.D. dissertation,
Windsor University
, Windsor, ON, Canada.
32.
Douglas
,
G. I.
,
1985
, “
Hydrogen Storage Characteristics of Zr(Fex,Cr1x)2
,” Ph.D. dissertation,
Windsor University
, Windsor, ON, Canada.
33.
Esayed
,
A.
,
1993
, “
Hysteresis in Metal-Hydrogen Systems
,” Ph.D. dissertation,
Windsor University
, Windsor, ON, Canada.
34.
Kakiuchi
,
K.
,
Itagaki
,
N.
,
Furuya
,
T.
,
Miyazaki
,
A.
,
Ishii
,
Y.
,
Suzuki
,
S.
,
Terai
,
T.
, and
Yamawaki
,
M.
, “
Role of Iron for Hydrogen Absorption Mechanism in Zirconium Alloys
,”
Zirconium in the Nuclear Industry: 14th International Symposium, ASTM-STP-1467
,
Stockholm, Sweden
,
2004
,
ASTM International
,
West Conshohocken, PA
, pp. 349–365.
35.
Norby
,
T.
,
Dyrlie
,
O.
, and
Kofstad
,
P.
, “
Ptotonic Conduction in Acceptor-Doped Cubic Rare-Earth Sesquioxides
,”
J. Am. Ceram. Soc.
, Vol.
75
, No.
5
,
1992
, pp. 1176–1181.
36.
Norby
,
T.
and
Kofstad
,
P.
, “
Electrical Conductivity of Y2O3 as a Function of Oxygen Parti Pressure in Wet and Dry Atmospheres
,”
J. Am. Ceram. Soc.
, Vol.
69
, No.
11
,
1986
, pp. 784–789.
37.
Norby
,
T.
and
Kofstad
,
P.
, “
Proton and Native-Ion Conductivites in Y2O3 at High Temperatures
,”
Solid State Ionics
, Vol.
20
,
1986
, pp. 169–184.
38.
Thomas
,
D. G.
and
Lander
,
J. J.
, “
Hydrogen as Donor in Zinic Oxide
,”
J. Chem. Phys.
, Vol.
25
, No.
6
,
1956
, pp. 1136–1142.
39.
Pêcheur
,
D.
,
Lefebvre
,
F.
,
Motta
,
A. T.
,
Lemaignan
,
C.
, and
Charquet
,
D.
, “
Oxidation of Intermetallic Precipitates in Zircaloy-4: Impact of Irradiation
,”
Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM-STP-1245
,
Baltimore, MD
,
1994
,
ASTM International
,
West Conshohocken, PA
, pp. 687–705.
40.
Pêcheur
,
D.
, “
Oxidation of β-Nb and Zr(Fe,V)2 Precipitates in Oxide Films Formed on Advanced Zr-Based Alloys
,”
J. Nucl. Mater.
, Vol.
278
,
2000
, pp. 195–201.
41.
Weidinger
,
H. G.
,
Ruhmann
,
H.
,
Cheliotis
,
G.
,
Maguire
,
M.
, and
Yau
,
T.-L.
, “
Corrosion-Electrochemical Properties of Zirconium Intermetallics
,”
Zirconium in the Nuclear Industry: Ninth International Symposium, ASTM-STP-1132
,
Kobe, Japan
,
1991
,
ASTM International
,
West Conshohocken, PA
, pp. 499–534.
42.
Peng
,
J. C.
,
2009
, “
In-Situ Investigation of Oxide Formation and Hydride Precipitation in Zircaloy-4 by Transmission Electron Microscope
,” M.S. dissertation,
Shanghai University
, Shanghai, China, pp. 34–38.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal