Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 16th International Symposium
By
Magnus Limbäck
Magnus Limbäck
Chairman and JAI Guest Editor
1
Westinghouse Electric Sweden
Search for other works by this author on:
Pierre Barbéris
Pierre Barbéris
JAI Guest Editor
2
Areva/Cezus Research Centre
,
Ugine,
FR
Search for other works by this author on:
ISBN:
978-0-8031-7515-0
No. of Pages:
1112
Publisher:
ASTM International
Publication date:
2012

In an Advanced CANDU Reactor (ACR) (ACR is a registered trademark of Atomic Energy of Canada Limited), pressure tubes of cold-worked Zr-2.5Nb materials will be used in the reactor core to contain the fuel bundles and the light water coolant. They will be subjected to higher temperature, pressure, and flux than those in a CANDU (CANDU is a registered trademark of Atomic Energy of Canada Limited) reactor, and accordingly require a thicker wall (6.5 mm for ACR versus 4.2 mm for CANDU). In order to ensure that these tubes will perform acceptably over their 30-year design life in such an environment, a study to model and forecast the performance of these thicker pressure tubes has been undertaken. One of the main requirements for the pressure tube is to have low diametral creep. Based on previous experience with CANDU reactor pressure tube performance and manufacture, an assessment of the grain structure and texture of the ACR pressure tubes indicates that the in-reactor creep deformation will be improved. Analysis of the distribution of texture parameters from a trial batch of 26 tubes shows that the variability is reduced relative to tubes fabricated in the past. This reduction in variability together with a shift to a coarser grain structure will result in a reduction in diametral creep design limits and thus a longer economic life for the fuel channels of the advanced CANDU reactor.

1.
Griffiths
,
M.
,
Davies
,
W. G.
,
Causey
,
A. R.
,
Moan
,
G. D.
,
Holt
,
R. A.
, and
Aldridge
,
S. A.
, “
Variability of In-Reactor Diametral Deformation for Zr-2.5Nb Pressure Tubing
,”
Zirconium in the Nuclear Industry: 13th International Symposium, ASTM STP 1423
,
Moan
G. D.
and
Rudling
P.
, Eds.,
Annecy, France
, June 2001,
ASTM International
,
West Conshohocken, PA
,
2002
, pp. 796–810.
2.
Bickel
,
G. A.
and
Griffiths
,
M.
, “
Manufacturing Variability, Microstructure and Deformation of Zr-2.5Nb Pressure Tubes
,”
J. ASTM Int.
, Vol.
4
, No.
10
,
2007
, Paper ID JAI101126.10.1520/STP152920120014.
3.
Bickel
,
G. A.
and
Griffiths
,
M.
, “
Manufacturing Variability, Microstructure and Deformation of Zr-2.5Nb Pressure Tubes
,”
Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505
,
Kammenzind
B.
and
Limback
M.
, Eds.,
Sunriver, OR
, June 2007,
ASTM International
,
West Conshohocken, PA
,
2009
, pp. 529–540.
4.
Bickel
,
G. A.
and
Griffiths
,
M.
, “
Manufacturing Variability and Deformation for Zr-2.5Nb Pressure Tubes
,”
J. Nucl. Mater.
, Vol.
383
,
2008
, pp. 9–13.
5.
Kearns
,
J. J.
, “
Thermal Expansion and Preferred Orientation in Zircaloy
,” Report No. WAPD-TM-472,
Bettis Atomic Power Laboratory
, Pittsburgh, PA, November
1965
.
6.
Griffiths
,
M.
,
Mecke
,
J. F.
, and
Winegar
,
J. E.
, “
Evolution of Microstructure in Zirconium Alloys During Irradiation
,”
Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295
,
Bradley
E. R.
and
Sabol
G. P.
, Eds.,
Garmisch-Partenkirchen, Germany
, Sept. 1995,
ASTM International
,
West Conshohocken, PA
,
1996
, pp. 580–602.
7.
Griffiths
,
M.
,
Wang
,
N.
,
Buyers
,
A.
, and
Donohue
,
S. A.
, “
Effect of Irradiation Damage on the Deformation Properties of Zr-2.5Nb Pressure Tubes
,”
J. ASTM Int.
, Vol.
5
, No.
1
,
2008
, Paper ID: JAI101133.
8.
Griffiths
,
M.
,
Wang
,
N.
,
Buyers
,
A.
, and
Donohue
,
S. A.
, “
Effect of Irradiation Damage on the Deformation Properties of Zr-2.5Nb Pressure Tubes
,”
Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505
,
Kammenzind
B.
and
Limback
M.
, Eds.,
Sunriver, OR
, June 2007,
ASTM International
,
West Conshohocken, PA
,
2009
, pp. 541–549.
9.
Griffiths
,
M.
,
Christodoulou
,
N.
, and
Donohue
,
S. A.
, “
Damage Dependence of Irradiation Deformation of Zr-2.5Nb Pressure Tubes
,”
J. ASTM Int.
, Vol.
2
, No.
7
,
2005
, Paper ID: JAI12432.
10.
Griffiths
,
M.
,
Christodoulou
,
N.
, and
Donohue
,
S. A.
, “
Damage Dependence of Irradiation Deformation of Zr-2.5Nb Pressure Tubes
,”
Zirconium in the Nuclear Industry: 14th International Symposium, ASTM STP 1467
,
Rudling
P.
and
Kammenzind
B.
, Eds.,
Stockholm, Sweden
, June 2004,
ASTM International
,
West Conshohocken, PA
,
2005
, pp. 686–708.
11.
Christodoulou
,
N.
,
Causey
,
A. R.
,
Holt
,
R. A.
,
Tomé
,
C. N.
,
Badie
,
N.
,
Klassen
,
R. J.
,
Sauvé
,
R.
, and
Woo
,
C. H.
, “
Modeling In-Reactor Deformation of Zr-2.5Nb Pressure Tubes in CANDU Power Reactors
,”
Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295
,
Bradley
E. R.
and
Sabol
G. P.
, Eds.,
Garmisch-Partenkirchen, Germany
, Sept. 1995,
ASTM International
,
West Conshohocken, PA
,
1996
, pp. 518–537.
12.
Choubey
,
R.
,
Aldridge
,
S. A.
,
Theaker
,
J. R.
,
Cann
,
C. D.
, and
Coleman
,
C. E.
, “
Effects of Extrusion-Billet Preheating on the Microstructure and Properties of Zr-2.5Nb Pressure Tube Materials
,”
Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295
,
Bradley
E. R.
and
Sabol
G. P.
, Eds.,
Garmisch-Partenkirchen, Germany
, Sept.
1995
,
ASTM International
,
West Conshohocken, PA
,
1996
, pp. 657–675.
13.
Fleck
,
R. G.
,
Price
,
E. G.
, and
Cheadle
,
B. A.
, “
Pressure Tube Development for CANDU Reactors
,”
Zirconium in the Nuclear Industry: Sixth International Symposium, ASTM STP 824
,
Franklin
D. G.
and
Adamson
R. B.
, Eds.,
Vancouver, British Columbia
, June 28–July 1,
1982
,
ASTM International
,
West Conshohocken, PA
,
1984
, pp. 88–105.
14.
Coleman
,
C. E.
,
Cheadle
,
B. A.
,
Cann
,
C. D.
, and
Theaker
,
J. R.
, “
Development of Pressure Tubes with Service Life of Greater Than 30 Years
,”
Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295
,
Bradley
E. R.
and
Sabol
G. P.
, Eds.,
Garmisch-Partenkirchen, Germany
, Sept. 1995,
ASTM International
,
West Conshohocken, PA
,
1996
, pp. 884–898.
15.
Theaker
,
J. R.
,
Choubey
,
R.
,
Moan
,
G. D.
,
Aldridge
,
S. A.
,
Davis
,
L.
,
Graham
,
R. A.
, and
Coleman
,
C. E.
, “
Fabrication of Zr-2.5Nb Pressure Tubes to Minimize the Harmful Effects of Trace Elements
,”
Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245
,
Garde
A. M.
and
Bradley
E. R.
, Eds.,
Baltimore MD
., June 21–24,
1993
,
ASTM International
,
West Conshohocken, PA
,
1994
, pp. 221–242.
16.
Cheadle
,
B. A.
,
Aldridge
,
S. A.
, and
Ells
,
C. E.
, “
Development of Texture and Structure in Zr-2.5 wt% Nb Extruded Tubes
,”
Can. Metall. Q.
, Vol.
11
(
1
),
1972
, pp. 121–127.
17.
Cheadle
,
B. A.
, “
Fabrication of Zirconium Alloys into Components for Nuclear Reactors
,”
Zirconium in the Nuclear Industry: 3rd International Symposium, ASTM STP 633
,
Lowe
A. L.
and
Parry
G. W.
, Eds.,
Quebec City, Canada
, Aug. 1976,
ASTM International
,
West Conshohocken, PA
,
1977
, pp. 457–485.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal