Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Creep-Fatigue Interactions: Test Methods and Models
By
Ashok Saxena
Ashok Saxena
1
University of Arkansas
,
Fayette, AR,
USA
, Symposium Co-Chair and JAI Guest Editor
Search for other works by this author on:
Bilal Dogan
Bilal Dogan
2
EPRI — Charlotte
,
Charlotte, NC,
USA
, Symposium Co-Chair and JAI Guest Editor
Search for other works by this author on:
ISBN:
978-0-8031-7525-9
No. of Pages:
388
Publisher:
ASTM International
Publication date:
2011

Low cycle fatigue (LCF) endurance data have a valuable part to play in the lifetime assessment of components and structures. These data comprise the initiation and growth stages, but the growth relations themselves and their practical use are not as familiar as those employed for deeper cracks. Early work modelled continuous-cycling fatigue crack growth by assuming a succession of miniature LCF specimens at the crack tip, the field then being extended by investigators examining behaviour at high temperatures. Models were developed allowing for the concomitant contribution of creep damage for comparison with continuous-cycling properties where striation spacings recorded cyclic crack progress. Alongside such modelling, empirical laws were deduced describing the progress of short cracks. Expressions may be derived linking LCF with linear-elastic fracture-mechanics (LEFM) crack growth, using the parameter ΔJ (equivalent stress-intensity parameter). However, the purpose of this review is to compare and contrast those models which employ an easily measured surface parameter (such as total or plastic strain range) as the governing variable. Crack growth normally adopts an exponential form so that the rate of growth per cycle accelerates as the crack deepens. The distinguishing feature is that the process zone at the crack tip is itself surrounded by cyclically yielding material, in contrast with LEFM. Energy methods may also be employed, where the process zone at the crack tip fails when the accumulated energy density reaches a critical value. An upper bound relation is provided, accounting for the deleterious effects of creep-fatigue-oxidation interaction, if empirical data are not to hand. A conservative assessment may thus be made of cyclic crack growth rate at a specified depth. This review examines the capability of each model to allow for such creep-fatigue effects.

1.
Skelton
,
R. P.
, “
Growth of Short Cracks during High Strain Fatigue and Thermal Cycling
,”
Low Cycle Fatigue and Life Prediction, ASTM STP 770
,
C. Amzallag.
,
Leis.
B. N.
, and
Rabbe.
P.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1982
, pp. 337–381.
2.
Skelton
,
R. P.
, “
Crack Initiation and Growth in Simple Metal Components during Thermal Cycling
,”
Fatigue at High Temperature
,
Skelton
R. P.
, Ed.,
Applied Science Publishers
,
London
,
1983
, pp. 1–62.
3.
Wareing
,
J.
, “
Mechanisms of High Temperature Fatigue and Creep-Fatigue Failure in Engineering Materials
,”
Fatigue at High Temperature
,
Skelton
R. P.
, Ed.,
Applied Science Publishers
,
London and New York
,
1983
, pp. 135–185.
4.
Skelton
,
R. P.
, “
Application of Small Specimen Crack Growth Data to Engineering Components at High Temperatures: A Review
,”
Low Cycle Fatigue, ASTM STP 942
,
Solomon
H. D.
,
Halford
G. R.
,
Kaisand
L. R.
, and
Leis.
B. N.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1988
, pp. 209–235.
5.
Ohtani
,
R.
, and
Kitamura
,
T.
, “
Creep-Fatigue Interaction under High Temperature Conditions
,”
Crack Propagation in Metallic Structures
, Vol.
2
,
Carpinteri
A.
, Ed.,
Elsevier
,
Amsterdam
,
1994
, pp. 1347–1383.
6.
Skelton
,
R. P.
, “
Creep Fatigue Interactions (Crack Initiation)
,”
Comprehensive Structural Integrity, Creep and High-Temperature Failure
, Vol.
5
,
Saxena
A.
, Ed.,
Elsevier
,
Oxford
,
2003
, pp. 25–112.
7.
Pineau
,
A.
, and
Antolovich
,
S. D.
, “
High Temperature Fatigue
,”
Fatigue of Materials and Structures
,
Bathias
C.
, and
Pineau
A.
, Eds.,
ISTE-J. Wiley
,
Hoboken, NJ
,
2011
, pp. 1–130.
8.
Skelton
,
R. P.
, “
Crack Growth during High Strain Fatigue of 0.5CrMoV Steel at 825K
,”
Mater. Sci. Eng.
, Vol.
32
,
1978
, pp. 211–219.
9.
Skelton
,
R. P.
, “
Environmental Crack Growth in 0.5CrMoV Steel during Isothermal High Strain Fatigue and Temperature Cycling
,”
Mater. Sci. Eng.
, Vol.
35
,
1978
, pp. 287–298.
10.
Nonaka
,
I.
, and
Kitagawa
,
M.
, “
Small Crack Behaviour and Assessment of High Temperature Fatigue Damage for 2.25Cr-1Mo Steel
,”
Low Cycle Fatigue and Elastoplastic Behaviour of Materials — 3
,
Rie
K.-T.
,
Grönling
H. W.
,
König
G.
,
Neumann
P.
,
Nowack
H.
,
Schwalbe
K.-H.
, and
Seeger
T.
, Eds.,
Elsevier Applied Science
,
London
,
1992
, pp. 527–532.
11.
Skelton
,
R. P.
, “
Cyclic Crack Growth Properties of Service-Exposed Ferritic Steels for Use in Thermal Fatigue Assessments
,”
Mater. High Temp.
, Vol.
21
,
2004
, pp. 129–145.
12.
Rees
,
C. J.
,
Skelton
,
R. P.
, and
Metcalfe
,
E.
, “
Materials Comparisons between NF616, HCM12A, and TB12M - II: Thermal Fatigue Properties
,”
New Steels for Advanced Plant up to 620°C
,
Metcalfe
E.
, Ed.,
EPRI/NP Conference, EPRI
,
1995
, pp. 135–151.
13.
Price
,
A. T.
, and
Elder
,
W. J.
, “
High Strain Fatigue and Crack Propagation in Type 316 Steel
,”
J. Iron Steel Inst., London
, Vol.
204
,
1966
, pp. 594–598.
14.
Dawson
,
R. A. T.
,
Elder
,
W. J.
,
Hill
,
G. J.
, and
Price
,
A. T.
, “
High-Strain Fatigue of Austenitic Steels
,”
Thermal and High Strain Fatigue, Monograph and Report Series
No. 32,
The Metals and Metallurgy Trust
, London,
1967
, pp. 239–269.
15.
Solomon
,
H. D.
, “
Frequency Dependent Low Cycle Fatigue Crack Propagation
,”
Metall. Trans.
, Vol.
4
,
1973
, pp. 341–347.
16.
Solomon
,
H. D.
, and
Coffin
,
L. F.
, “
Effects of Frequency and Environment on Fatigue Crack Growth in A286 at 1100F
,”
Fatigue at Elevated Temperatures, ASTM STP 520
,
Carden
A. E.
,
McEvily
A. J.
, and
Wells
C. H.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1973
, pp. 112–122.
17.
Wareing
,
J.
, “
Fatigue Crack Growth in a Type 316 Stainless Steel and a 20 pct Cr/25 pct Ni/Nb Stainless Steel at Elevated Temperature
,”
Metall. Trans.
, Vol.
6A
,
1975
, pp. 1367–1377.
18.
Skelton
,
R. P.
, “
High Strain Fatigue of 20Cr/25Ni/Nb Steel at 1025 K Part III: Crack Propagation
,”
Mater. Sci. Eng.
, Vol.
19
,
1975
, pp. 193–200.
19.
Maiya
,
P. S.
, 1975, “
Considerations of Crack Initiation and Crack Propagation in Low-Cycle Fatigue
,”
Scr. Metall.
, Vol.
9
,
1975
, pp. 1141–1146.
20.
Wareing
,
J.
, and
Vaughan
,
H. G.
, “
The Relationship between Striation Spacing, Macroscopic Growth Rate, and the Low-Cycle Fatigue Life of a Type 316 Stainless Steel at 625°C
,”
Met. Sci.
, Vol.
11
,
1977
, pp. 439–446.
21.
Wareing
,
J.
, and
Vaughan
,
H. G.
, “
Influence of Surface Finish on Low-Cycle Fatigue Characteristics of Type 316 Stainless Steel at 400°C
,”
Met. Sci.
, Vol.
13
,
1979
, pp. 1–8.
22.
Yamaguchi
,
K.
, and
Kanazawa
,
K.
, “
Crack Propagation Rates of Austenitic Steels under High Temperature Low-Cycle Fatigue Conditions
,”
Metall. Trans.
, Vol.
10A
,
1979
, pp. 1445–1451.
23.
Maiya
,
P. S.
, “
Effects of Wave Shape and Ultra High Vacuum on Elevated Temperature Low Cycle Fatigue in Type 304 Stainless Steel
,”
Mater. Sci. Eng.
, Vol.
47
,
1981
, pp. 13–221.
24.
Levaillant
,
C.
, and
Pineau
,
A.
, “
Assessment of High Temperature Low Cycle Fatigue Life of Austenitic Stainless Steels Using Intergranular Damage as a Correlating Parameter
,”
Low Cycle Fatigue, ASTM STP 770
,
Amzallag
C.
,
Leis
B. N.
, and
Rabbe
P.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1982
, pp. 169–193.
25.
Pineau
,
A.
, “
High Temperature Fatigue Behaviour of Engineering Materials in Relation to Microstructure
,”
Fatigue at High Temperature
,
Skelton
R. P.
, Ed.,
Applied Science Publishers
,
London
,
1983
, pp. 305–364.
26.
Skelton
,
R. P.
, “
Effect of Microstructure and Tensile Dwell on Growth of Short Fatigue Cracks in 316 Steel at 625°C
,”
Mechanical Behaviour and Nuclear Applications of Stainless Steel at Elevated Temperatures, Book 280
,
The Metals Society
,
London
,
1982
, pp. 129–135.
27.
Levaillant
,
C.
,
Grattier
,
J.
,
Mottot
,
M.
, and
Pineau
,
A.
, “
Creep and Creep-Fatigue Intergranular Damage in Austenitic Stainless Steels: Discussion of the Creep-Dominated Regime
,”
Low Cycle Fatigue, ASTM STP 942
,
Solomon
H. D.
,
Halford
G. R.
,
Kaisand
L. R.
, and
Leis
B. N.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1988
, pp.
414–437
.
28.
Okazaki
,
M.
,
Tabata
,
T.
, and
Nohmi
,
S.
, “
Intrinsic Stage I Crack Growth of Directionally Solidified Ni-Base Superalloys during Low-Cycle Fatigue at Elevated Temperature
,”
Metall. Trans.
, Vol.
21A
,
1990
, pp. 2201–2208.
29.
Yamamoto
,
M.
, and
Nitta
,
A.
, “
Effects of Strain Holding on Creep-Fatigue Micro Crack Initiation Life in Ni-Based Single Crystal Superalloy
,”
Proceedings of Creep 7
,
Japan Society of Mechanical Engineers
,
2001
, pp. 647–652.
30.
British Energy Generation Ltd.
, R5:
Assessment Procedure for the High Temperature Response of Structures
,
Ainsworth
R. A.
, Ed., Issue 3,
Barnwood, UK
,
2003
.
31.
Skelton
,
R. P.
, “
The Prediction of Crack Growth Rates from Total Endurances in High Strain Fatigue — Thirty Years On
,”
Fatigue Fract. Eng. Mater. Struct.
, Vol.
32
,
2008
, pp. 81–83.
32.
Skelton
,
R. P
, “
Damage Factors during High Temperature Fatigue Crack Growth
,”
Behaviour of Defects at High Temperatures, ESIS 15
,
Ainsworth
R. A.
, and
Skelton
R. P.
, Eds.,
Mechanical Engineering Publications
,
London
,
1993
, pp. 191–218.
33.
Raynor
,
D.
, and
Skelton
,
R. P.
,
1985
, “
The Onset of Cracking and Failure Criteria in High Strain Fatigue
,”
Techniques for High Temperature Fatigue Testing
,
Sumner
G.
, and
Livesey
V. B.
, Eds.,
Elsevier Applied Science
,
1985
, pp. 143–166.
34.
ASTM Standard E2714, “
Standard Test Method for Creep-Fatigue Testing
,” ASTM Standards, Vol.
03.01
,
2009
.
35.
Holdsworth
,
S. R.
,
Skelton
,
R. P.
, and
Dogan
,
B.
, “
Code of Practice for the Measurement and Analysis of High Strain Creep-Fatigue Short Crack Growth
,”
Mater. High Temp.
, Vol.
27
,
2010
, pp. 265–283.
36.
De Forrest
,
A. V.
, “
The Rate of Growth of Fatigue Cracks
,”
ASME J. Appl. Mech.
, Vol.
58
,
1936
, pp. 23–25.
37.
Dowling
,
N. E.
, “
Crack Growth during Low-Cycle Fatigue of Smooth Axial Specimens
,”
Cyclic Stress-Strain and Plastic Deformation Aspects of Crack Growth, ASTM STP 637
,
Impellizeri
L. F.
, Ed.,
ASTM International
,
West Conshohocken, PA
,
1977
, pp. 97–121.
38.
Starkey
,
M. S.
, and
Skelton
,
R. P.
, “
A Comparison of the Strain Intensity and Cyclic Approaches to Crack Growth
,”
Fatigue. Eng. Mater. Struct.
, Vol.
5
,
1982
, pp. 329–341.
39.
McClintock
,
F. A.
, “
On the Plasticity of the Growth of Fatigue Cracks
,”
Fracture of Solids
,
Drucker
D. C.
, and
Gilman
J. J.
, Eds.,
Interscience Publishers
,
New York
,
1963
, pp. 65–102.
40.
McClintock
,
F. A.
,
Fatigue Crack Propagation, ASTM STP 415
,
Grosskreutz
J.
, Ed.,
ASTM International
,
West Conshohocken, PA
,
1967
, pp. 170–174 (in discussion).
41.
Neuber
,
H.
, “
Theory of Stress Concentration for Shear-Strained Prismatical Bodies with Arbitrary Non Linear Stress Strain Law
,”
Trans. AIME, Series E
, Vol.
28
,
1961
, pp. 544–550.
42.
Grosskreutz
,
J. C.
, “
A Theory of Stage II Fatigue Crack Propagation
,” AF Materials Laboratory Technical Report AFML-TR-64-415,
Wright-Patterson Air Force Base
, Ohio,
03
1965
.
43.
Weiss
,
V.
, “
Analysis of Crack Propagation in Strain Cycling Fatigue
,”
Fatigue — An Interdisciplinary Approach, Proceedings of 10th Sagamore Army Research Conference
,
Syracuse University Press
,
1964
, pp. 179–186.
44.
Weiss
,
V.
, “
Notch Analysis of Fracture
,”
Fracture — An Advanced Treatise
, Vol.
3
,
Academic Press
,
New York
,
1968
, pp. 227–264.
45.
Coffin
,
L. F.
, “
Fatigue
,”
Annu. Rev. Mater. Sci.
, Vol.
2
,
1972
, pp. 313–348.
46.
Skelton
,
R. P.
, “
The Prediction of Crack Growth Rates from Total Endurances in High Strain Fatigue
,”
Fatigue Eng. Mater. Struct.
, Vol.
2
,
1979
, pp. 305–318.
47.
Skelton
,
R. P.
,
Vilhelmsen
,
T.
, and
Webster
,
G. A.
, “
Energy Criteria and Cumulative Damage during Fatigue Crack Growth
,”
Int. J. Fatigue
, Vol.
20
,
1998
, pp. 641–649.
48.
Riedel
,
H.
,
Fracture at High Temperatures
,
Springer-Verlag
,
Berlin
,
1987
, p. 37.
49.
Boettner
,
R. C.
,
Laird
,
C.
, and
McEvily
,
A. J.
, “
Crack Nucleation and Growth in High Strain Low Cycle Fatigue
,”
Trans. Metall. Soc. AIME
, Vol.
233
,
1965
, pp. 379–387.
50.
Solomon
,
H. D.
, “
Low Cycle Fatigue Crack Propagation in a 0.2%C 0.9%Mn Steel
,”
J. Mater.
, Vol.
7
,
1972
, pp. 299–306.
51.
Haigh
,
J. R.
and
Skelton
,
R. P.
, “
A Strain Intensity Approach to High Temperature Fatigue Crack Growth and Failure
,”
Mater. Sci. Eng.
, Vol.
36
,
1978
, pp. 133–137.
52.
Skelton
,
R. P.
, “
Damage Factors and Upper Bounds for Interactive Creep-Fatigue Growth
,”
Mater. High Temp.
, Vol.
25
,
2008
, pp. 231–245.
53.
Kubo
,
S.
, and
Kitamura
,
T.
, “
Creep-Fatigue Crack Growth
,”
Comprehensive Structural Integrity, Creep and High-Temperature Failure
, Vol.
5
,
Saxena
A.
, Ed.,
Elsevier
,
Oxford
,
2003
, pp. 273–307.
54.
Ramberg
,
W.
, and
Osgood
,
W. R.
, “
Description of Stress-Strain Curves by Three Parameters
,”
NACA Tech
Note No. 902,
04
1943
.
55.
Hales
,
R.
,
Holdsworth
,
S. R.
,
O'Donnell
,
M. P.
,
Perrin
,
I. J.
, and
Skelton
,
R. P.
, “
A Code of Practice for the Determination of Cyclic Stress-Strain Data
,”
Mater. High Temp.
, Vol.
19
,
2002
, pp. 165–185.
56.
Skelton
,
R. P.
, “
Cyclic Hardening, Softening and Crack Growth during High Temperature Fatigue
,”
Mater. Sci. Technol.
, Vol.
9
,
1993
, pp. 1001–1008.
57.
Nilsson
,
J.-O.
, “
The Influence of Nitrogen on High Temperature Low Cycle Fatigue Behaviour of Austenitic Stainless Steels
,”
Fatigue Eng. Mater. Struct.
, Vol.
7
,
1984
, pp. 55–64.
58.
Nilsson
,
J.-O.
, “
Effect of Nitrogen on Creep-Fatigue Interaction in Austenitic Stainless Steels at 600°C
,”
Low Cycle Fatigue, ASTM STP 942
,
Solomon
H. D.
,
Halford
G. R.
,
Kaisand
L. R.
, and
Leis
B. N.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1988
, pp. 543–557.
59.
Wareing
,
J.
,
Vaughan
,
H. G.
, and
Tomkins
,
B.
, “
Mechanisms of Elevated Temperature Fatigue Failure in Type 316 Stainless Steel
,”
Creep-Fatigue Environment Interactions, Proceedings of TMS-AIME Symposium
, Fall Meeting, Milwaukee,
Pelloux
R. M.
, and
Stoloff
N.
, Eds.,
AIME
,
New York
,
1980
, pp. 129–150.
60.
Levaillant
,
C.
,
Rezgui
,
B.
, and
Pineau
,
A.
, 1980, “
Effects of Environment and Hold Times on High Temperature Low Cycle Fatigue Behaviour of 316L Stainless Steel
,”
Mechanical Behaviour of Materials, ICM3
, Vol.
2
,
Miller
K. J.
, and
Smith
R. F.
, Eds.,
Pergamon Press
,
Oxford
,
1980
, pp. 163–172.
61.
Coffin
,
L. F.
, “
Fatigue at High Temperature
,”
Fatigue at Elevated Temperatures, ASTM STP 520
,
Carden
A. E.
,
McEvily
A. J.
, and
Wells
C. H.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1973
, pp. 5–34.
62.
Rémy
,
L.
, “
Thermal-Mechanical Fatigue (including Thermal Shock)
,”
Comprehensive Structural Integrity, Creep and High-Temperature Failure
, Vol.
5
,
Saxena
A.
, Ed.,
Elsevier
,
Oxford
,
2003
, pp.
113–199
.
63.
Isobe
,
N.
, and
Sarkurai
,
S.
, “
Compressive Strain Hold Effect on High Temperature Low-Cycle Fatigue Crack Growth in Superalloys
,”
Mater. Sci. Res. Int.
, Vol.
9
,
2003
, pp. 29–33.
64.
Reuchet
,
J.
, and
Rémy
,
L.
, “
High Temperature Fatigue Behaviour of a Cast Cobalt-Base Alloy
,”
Fatigue Eng. Mater. Struct.
, Vol.
2
,
1979
, pp. 51–62.
65.
Majumdar
,
S.
, and
Maiya
,
P. S.
, “
A Mechanistic Model for Time-Dependent Fatigue
,”
J. Eng. Mater. Technol.
, Vol.
102
,
1980
, pp. 159–167.
66.
Majumdar
,
S.
, and
Maiya
,
P. S.
, “
An Interactive Damage Equation for Creep-Fatigue Interaction
,”
Mechanical Behaviour of Materials, ICM3
, Vol.
2
,
Miller
K. J.
, and
Smith
R. F.
, Eds.,
Pergamon Press
,
Oxford
,
1980
, pp.
101–120
.
67.
Priest
,
R. H.
, and
Ellison
,
E. G.
, “
An Assessment of Life Analysis Techniques for Fatigue-Creep Situations
,”
Res. Mech.
, Vol.
4
,
1982
, pp. 127–150.
68.
Miller
,
D. A.
,
Priest
,
R. H.
, and
Ellison
,
E. G.
, “
A Review of Material Response and Life Prediction Techniques under Fatigue-Creep Loading Conditions
,”
High Temp. Mater. Processes
, Vol.
6
,
1984
, pp. 55–194.
69.
Beere
,
W.
, and
Miller
,
D.
, “
The Effect of Creep Cavitation on High Temperature Slow/Fast Fatigue
,”
Proceedings 2nd International Conference on Creep and Fracture of Enginering Materials and Structures, Part II
,
Wilshire
B.
, and
Owen
D. R. J.
, Eds.,
Pineridge Press
,
Swansea
,
1984
, pp. 1003–1014.
70.
Rie
,
K.-T.
,
Schmidt
,
R. M.
,
Ilschner
,
B.
, and
Nam
,
S. W.
, “
A Model for Predicting Low Cycle Fatigue Life under Creep-Fatigue Interaction
,”
Low Cycle Fatigue, ASTM STP 942
,
Solomon
H. D.
,
Halford
G. R.
,
Kaisand
L. R.
, and
Leis
B. N.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1988
, pp. 313–328.
71.
Takahashi
,
Y.
, and
Yaguchi
,
M.
, “
Modification of Ductility Exhaustion-Type Creep-Fatigue Life Prediction Method Based on Re-definition of Creep Damage and Application to High Chromium Steels
,”
J. Soc. Mat. Sci. Japan
, Vol.
54
, No.
2
,
2005
, pp. 168–173.
72.
Takahashi
,
Y.
, “
Study on Creep-Fatigue Evaluation Procedures for High Chromium Steels, Part I: Test Results and Life Prediction Based on Measured Stress Relaxation
,”
Int. J. Pressure Vessels Piping
, Vol.
85
,
2008
, pp. 406–422.
73.
Tomkins
,
B.
, “
Fatigue Crack Propagation in Metals — An Analysis
,”
Phil. Mag.
, Vol.
18
,
1968
, pp. 1041–1066.
74.
Tomkins
,
B.
, “
Some Factors Influencing the Development of Fracture under Cyclic Conditions
,”
Corrosion Fatigue
,
NACE-2
,
Houston
,
1972
, pp. 303–311.
75.
Lloyd
,
G. J.
, and
Wareing
,
J.
, “
Stable and Unstable Fatigue Crack Propagation during High Temperature Creep-Fatigue in Austenitic Steels: The Role of Precipitation
,”
J. Eng. Mater. Technol.
, Vol.
101
,
1979
, pp. 275–283.
76.
Tomkins
,
B.
, “
The Development of Fatigue Crack Propagation Models for Engineering Applications at Elevated Temperatures
,”
J. Eng. Mater. Technol.
, Vol.
97
,
1975
, pp. 289–297.
77.
Jaske
,
C.E.
, “
Creep-Fatigue Crack Growth in Type 316 Stainless Steel
,”
International Conference on Advances in Life Prediction Methods
,
Woodford
D. A.
, and
Whitehead
J. R.
, Eds.,
ASME
,
New York
,
1983
, pp. 93–103.
78.
Jaske
,
C.E.
, “
A Crack-Tip-Zone Interaction Model for Creep-Fatigue Crack Growth
,”
Fatigue Eng. Mater. Struct.
, Vol.
6
,
1983
, pp. 159–166.
79.
Gladwin
,
D. N.
,
Miller
,
D. A.
, and
Priest
R. H.
, “
Examination of Fatigue and Creep-Fatigue Crack Growth Behaviour of Aged type 347 Stainless Steel Weld Metal at 650°C
,”
Mater. Sci. Technol.
, Vol.
5
,
1989
, pp. 40–51.
80.
Okazaki
,
M.
,
Hattori
,
I.
,
Ikeda
,
T.
, and
Koizumi
,
T.
, “
Low Cycle Fatigue Crack Growth Behaviour at Elevated Temperature under the Combined Strain-Wave-Shape Cycling in Type 304 Stainless Steel
,”
Trans. ASME J. Eng. Mater. Technol.
Vol.
107
,
1985
, pp. 346–355.
81.
Okazaki
,
M.
,
Hattori
,
I.
,
Shiraiwa
,
F.
, and
Kozumi
,
T.
, “
Effect of Strain Wave Shape on Low-Cycle Fatigue Crack Propagation of SU 304 Stainless Steel at Elevated Temperatures
,”
Metall. Trans.
, Vol.
14A
,
1983
, pp. 1649–1659.
82.
Raj
,
R.
, and
Min
,
B. K.
, “
The Effect of Cycle Shape on Creep-Fatigue Interaction in Austenitic Stainless Steel
,”
ASME/CSME Pressure Vessel and Piping Conference, Montreal, Canada
, June 25–30, 1978, Paper 78-PVP-89.
83.
Skelton
,
R. P.
, and
Bucklow
,
J. I.
, “
Cyclic Oxidation and Crack Growth during High Strain Fatigue of Low Alloy Steel
,”
Metal. Sci.
, Vol.
12
,
1978
, pp. 64–70.
84.
Skelton
,
R. P.
, and
Gandy
,
D.
, “
Creep-Fatigue Damage Accumulation and Interaction Diagram Based on Metallographic Interpretation of Mechanisms
,”
Mater. High Temp.
, Vol.
25
,
2008
, pp. 27–54.
85.
Kitamura
,
T.
,
Tada
,
N.
, and
Ohtani
,
R.
, “
Evaluation of Creep Damage Based on Initiation and Growth of Small Cracks
,”
Behaviour of Defects at High Temperatures, ESIS 15
,
Ainsworth
R. A.
, and
Skelton
R. P.
, Eds.,
Mechanical Engineering Publications
,
London
,
1993
, pp. 47–69.
86.
Hales
,
R.
, “
A Quantitative Metallographic Assessment of Structural Degradation of Type 316 Stainless Steel during Creep-Fatigue
,”
Fatigue Eng. Mater. Struct.
, Vol.
3
,
1980
, pp. 339–356.
87.
Tomkins
,
B.
, and
Wareing
,
J.
, “
Elevated Temperature Fatigue Interactions in Engineering Materials
,”
Met. Sci.
, Vol.
97
,
1977
, pp. 414–424.
88.
Wareing
,
J.
,
Tomkins
,
B.
, and
Bretherton
,
I.
, “
Life Prediction in Austenitic Stainless Steel
,”
Flow and Fracture at Elevated Temperatures
,
ASM
,
Ohio
,
1985
, pp. 251–278.
89.
Chakrabortty
,
S.
, “
A Model Relating Low Cycle Fatigue Properties and Microstructure to Fatigue Crack Propagation Rates
,”
Fatigue Eng. Mater. Struct.
, Vol.
2
,
1979
, pp. 331–344.
90.
Majumdar
,
S.
, and
Morrow
,
J
, “
Correlation between Fatigue Crack Propagation and Low Cycle Fatigue Properties
,”
Fracture Toughness and Slow-Stable Cracking, ASTM STP 559
,
Paris
P. C.
, and
Irwin
G. R.
,Eds.,
ASTM International
,
West Conshohocken, PA
,
1974
, pp. 159–182.
91.
Reger
,
M.
,
Rezai-Aria
,
F.
, and
Rémy
,
L.
, “
Low Cycle Fatigue Propagation of Microcracks in Two Superalloys
,”
Advances in Fracture Research
,
Valluri
S. R.
,
Taplin
D. M. R.
,
Rao
P. Rama
,
Knott
J. F.
, and
Dubey
R.
, Eds.,
Pergamon Press
,
Oxford
,
1984
, pp. 1589–1595.
92.
Ermi
,
A. M.
,
Nahm
,
H.
, and
Moteff
,
J.
, “
Fatigue Crack Growth Behavior of Incoloy 800 Tested in the Bend and Push-Pull Mode
,”
Mater. Sci. Eng.
, Vol.
30
,
1977
, pp. 41–48.
93.
Holdsworth
,
S. R.
, “
Creep-fatigue crack growth from a stress concentration
,”
Mater. High Temp.
, Vol.
15
,
1998
, pp. 111–116.
94.
Mazza
,
E.
,
Hollenstein
,
M.
,
Holdsworth
,
S. R.
, and
Skelton
,
R. P.
, “
Notched Specimens Thermo-Mechanical Fatigue of a 1CrMoV Turbine Steel
,”
Nucl. Eng. Des.
, Vol.
234
,
2004
, pp. 11–24.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal