Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Fatigue and Fracture of Medical Metallic Materials and Devices: 2nd Volume
By
K. L. Jerina
K. L. Jerina
1
Washington University
,
St. Louis, MO
Search for other works by this author on:
M. R. Mitchell
M. R. Mitchell
2
Northern Arizona University
,
Flagstaff, AZ
Search for other works by this author on:
Terry O'Riska Woods
Terry O'Riska Woods
3
USDA
,
Rockville, MD
Search for other works by this author on:
Brian T. Berg
Brian T. Berg
4
Boston Scientific
,
Maple Grove, MN
Search for other works by this author on:
ISBN:
978-0-8031-7501-3
No. of Pages:
150
Publisher:
ASTM International
Publication date:
2010

Coronary arteries possess a curvilinear shape as observed in all vascular trees and undergo a cyclical deformation due to their attachment to the myocardium. Implanted stents result in a permanent alternation of the curvilinearity of the artery. It has been hypothesized that the frequently observed straightening effect of stents implies an uneven distribution of forces within the arterial wall, potentially augmenting the injury reaction of the vessel wall and thereby increasing the rate of restenosis. When a target vessel is very tortuous or its shape changes dramatically during the cardiac cycle, the implanted stent may fracture due to complex bending forces induced from the artery movement. Stent fractures have been reported in coronary and pulmonary artery stenting, aortic coarctation, and peripheral vascular stenting such as femoropopliteal artery, renal artery, common iliac artery, and subclavian artery or even nonvascular stenting such as gastrointestinal tract. It is believed that stent fracture is likely to be affected by a large flexion induced from body movement (e.g., such as knee bending or leg crossing) or cyclic flexion subject to cardiac motion. Additionally, stent fracture might be also associated with the high incidence of target lesion revascularization. It is the intent of this paper to propose a methodology to quantify artery deformation subject to cardiac motion and shape alternation caused by device implantation that are applicable today and also generic to other vascular trees created from the same or different imaging modalities. In experiments, two typical human coronary arterial trees are presented, and the validation study by use of intra-coronary marker wires is reported.

1.
Moses
,
W.
,
Leon
,
M. B.
,
Popma
,
J. J.
,
Fitzgerald
,
P. J.
,
Holmes
,
D. R.
,
O'Shaughnessy
,
C.
,
Caputo
,
R. P.
,
Kereiakes
,
D. J.
,
Williams
,
D. O.
,
Teirstein
,
P. S.
,
Jaeger
,
J. L.
, and
Kuntz
,
R. E.
, “
Sirolimus-Eluting Stents Versus Standard Stents in Patients with Stenosis in a Native Coronary Artery
,”
N. Engl. J. Med.
 0028-4793, Vol.
349
, No.
14
,
2003
, pp. 1315–1323.
2.
Schampaert
,
E.
,
Cohen
,
E. A.
,
Schlüter
,
M.
,
Reeves
,
F.
,
Traboulsi
,
M.
,
Title
,
L.
,
Kuntz
,
R.
, and
Popma
,
J. J.
, “
The Canadian Study of the Sirolimus-Eluting Stent in the Treatment of Patients with Long de Novo Lesions in Small Native Coronary Arteries (C-SIRIUS)
,”
J. Am. Coll. Cardiol.
 0735-1097, Vol.
43
, No.
6
,
2004
, pp. 1110–1115.
3.
Schofer
,
J.
,
Schlüter
,
M.
,
Gershlick
,
A.
,
Wijns
,
W.
,
Garcia
,
E.
,
Schampaert
,
E.
, and
Breithardt
,
G.
, “
Sirolimus-Eluting Stents for Treatment of Patients with Long Atherosclerotic Lesions in Small Coronary Arteries: Double-Blind, Randomized Controlled Trial (E-SIRIUS)
,”
Lancet
 0140-6736, Vol.
362
, No.
9390
,
2003
, pp. 1093–1099.
4.
Stone
,
G. W.
,
Ellis
,
S. G.
,
Cox
,
D. A.
,
Hermiller
,
J.
,
O'Shaughnessy
,
C.
,
Mann
,
J. T.
,
Turco
,
M.
,
Caputo
,
R.
,
Bergin
,
P.
,
Greenberg
,
J.
,
Popma
,
J. J.
, and
Russel
,
M. E.
, “
A Polymer-Based, Paclitaxel-Eluting Stent in Patients with Coronary Artery Disease
,”
N. Engl. J. Med.
 0028-4793, Vol.
350
, No.
3
,
2004
, pp. 221–231.
5.
Lemos
,
P. A.
,
Saia
,
F.
,
Ligthart
,
J. M. R.
,
Arampatzis
,
C. A.
,
Sianos
,
G.
,
Tanabe
,
K.
,
Hoye
,
A.
,
Degertekin
,
M.
,
Daemen
,
J.
,
McFadden
,
E.
,
Hofma
,
S.
,
Smits
,
P. C.
,
de Feyter
,
P.
,
van der Giessen
,
W. J.
,
van Domburg
,
R. T.
, and
Serruys
,
P. W.
, “
Coronary Restenosis After Sirolimus-Eluting Stent Implantation: Morphological Description and Mechanistic Analysis from Consecutive Series of Cases
,”
Circulation
 0009-7322, Vol.
108
,
2003
, pp. 257–260.
6.
Mehrle
,
A.
,
Skelton
,
T.
, and
Almonacid
,
A.
, “
Stent Fracture: An Unusual Cause of Late Restenosis After Sirolimus-Eluting Stent Placement
,”
Catheterization and Cardiovascular Interventions
, Vol.
69
, No.
7
,
2007
, pp. 988–991.
7.
Makaryus
,
A. N.
,
Lefkowitz
,
L.
, and
Lee
,
A. D. K.
, “
Coronary Artery Stent Fracture
,”
Int. J. Card. Imaging
 0167-9899, Vol.
23
, No.
3
,
2007
, pp. 305–309.
8.
Shaikh
,
F.
,
Maddikunta
,
R.
,
Djelmami-Hani
,
M.
,
Solis
,
J.
,
Allaqaband
,
S.
, and
Bajwa
,
T.
, “
Stent Fracture, an Incidental Finding or a Significant Marker of Clinical In-Stent Restenosis?
Catheterization and Cardiovascular Interventions
, Vol.
71
, No.
5
,
2008
, pp. 614–618.
9.
Aoki
,
J.
,
Nakazawa
,
G.
,
Tanabe
,
K.
,
Hoye
,
A.
,
Yamamoto
,
H.
,
Nakayama
,
T.
,
Onuma
,
Y.
,
Higashikuni
,
Y.
,
Otsuki
,
S.
,
Yagishita
,
A.
,
Yachi
,
S.
,
Nakajima
,
H.
, and
Hara
,
K.
, “
Incidence and Clinical Impact of Coronary Stent Fracture After Sirolimus-Eluting Stent Implantation
,”
Catheterization and Cardiovascular Interventions
, Vol.
69
, No.
3
,
2007
, pp. 380–386.
10.
Aoki
,
A.
,
Anabe
,
J.
,
Inami
,
T.
,
Ogano
,
M.
,
Kobayashi
,
N.
,
Hosokawa
,
Y.
,
Yokoyama
,
H.
,
Takano
,
H.
, and
Mizuno
,
K.
, “
Late Multiple Stent Fractures Following Deployment of Sirolimus-Eluting Stents for Diffuse Right Coronary Artery Stenosis
,”
International Heart Journal
, Vol.
48
, No.
6
,
2007
, pp. 767–772.
11.
Rohit
,
M. K.
,
Grag
,
P. K.
, and
Talwar
,
K. K.
, “
Stent Fracture After Stent Therapy for Aortic Coarctation: Nightmares in Invasive Cardiology
,”
Indian Heart J.
 0019-4832, Vol.
59
,
2007
, pp. 77–79.
12.
Scheinert
,
D.
,
Scheinert
,
S.
,
Sax
,
J.
,
Piorkowski
,
C.
,
Braunlich
,
S.
,
Ulrich
,
M.
,
Biamino
,
G.
, and
Schmidt
,
A.
, “
Prevalence and Clinical Impact of Stent Fracture After Femoropopliteal Stenting
,”
J. Am. Coll. Cardiol.
 0735-1097, Vol.
45
, No.
2
,
2005
, pp. 312–315.
13.
Robertson
,
S. W.
,
Jessup
,
D. B.
,
Boero
,
I. J.
, and
Cheng
,
C. P.
, “
Right Renal Artery in Vivo Stent Fracture
,”
J. Vasc. Interv. Radiol.
 1051-0443Vol.
19
,
2008
, pp. 439–442.
14.
Higashiura
,
W.
,
Sakaguchi
,
S.
,
Morimoto
,
K.
, and
Kichikawa
,
K.
, “
Stent Fracture and Reocclusion After Placement of a Single Self-Expanding Stent in the Common Iliac Artery and Endovascular Treatment
,”
Cardiovasc. Intervent Radiol.
 0174-1551, Vol.
31
, No.
5
,
2008
, pp. 1013–1017.
15.
Phipp
,
L. H.
,
Scott
,
D. J.
,
Kessel
,
D.
, and
Robertson
,
I.
, “
Subclavian Stents and Stent-Grafts: Cause for Concern?
J. Endovasc Surg.
 1074-6218, Vol.
6
, No.
3
,
1999
, pp. 223–226.
16.
Peck
,
R.
and
Wattam
,
J.
, “
Fracture of Memotherm Metallic Stents in the Biliary Tract
,”
Cardiovasc. Intervent Radiol.
 0174-1551, Vol.
23
, No.
1
,
2000
, pp. 55–56.
17.
Donahue
,
D. G.
,
Saltzman
,
J. R.
, and
Krims
,
P.
, “
Stent Fracture in Malignant Biliary Obstruction
,”
Gastrointest. Endosc.
 0016-5107, Vol.
39
, No.
6
,
1993
, pp. 864–865.
18.
Cheng
,
C. P.
,
Wilson
,
N. M.
,
Hallett
,
R. L.
,
Herfkens
,
R. J.
, and
Taylor
,
C. A.
, “
In Vivo MR Angiographic Quantification of Axial and Twisting Deformations of the Superficial Femoral Artery Resulting from Maximum Hip and Knee Flexion
,”
J. Vasc. Interv. Radiol.
 1051-0443, Vol.
17
,
2006
, pp. 979–987.
19.
Klein
,
A. J.
,
Casserly
,
I. P.
,
Messenger
,
J. C.
,
Carroll
,
J. D.
, and
Chen
,
S. Y. J.
, “
In Vivo 3D Modeling of the Femoropopliteal Artery in Human Subjects Based on X-Ray Angiography: Methodology and Validation
,”
Med. Phys.
 0094-2405, Vol.
36
, No.
2
,
2009
, pp. 289–310.
20.
Liao
,
R.
,
Green
,
N. E.
,
Chen
,
S. Y.
,
Messenger
,
J. C.
,
Hansgen
,
A. R.
,
Groves
,
B. M.
, and
Carroll
,
J. D.
, “
Three-Dimensional Analysis of in Vivo Coronary Stent- Coronary Artery Interactions
,”
Int. J. Card. Imaging
 0167-9899, Vol.
20
, No.
4
,
2004
, pp. 305–313.
21.
Ring
,
G.
,
Bognár
,
E.
,
Dobránszky
,
J.
,
Ginsztler
,
J.
, and
Major
,
L.
, “
Mechanical Behaviors of Coronary Stents
,”
Advances in Science and Technology: Materials in Clinical Application VII
,
Vincenzini
P.
and
Giardino
R.
, eds.
2006
, Vol.
49
, pp. 91–96.
22.
Marrey
,
R. V.
,
Burgermeister
,
R.
,
Grishaber
,
R. B.
, and
Ritchie
,
R. O.
, “
Fatigue and Life Prediction for Cobalt-Chromium Stents: A Fracture Mechanics Analysis
,”
Biomaterials
 0142-9612, Vol.
27
,
2006
, pp. 1988–2000.
23.
Chen
,
S.-Y. J.
and
Carroll
,
J. D.
, “
3D Reconstruction of Coronary Arterial Tree to Optimize Angiographic Visualization
,”
IEEE Trans. Med. Imaging
 0278-0062, Vol.
19
, No.
4
,
2000
, pp. 318–336.
24.
Chen
,
S.-Y. J.
and
Metz
,
C. E.
, “
Improved Determination of Biplane Imaging Geometry from Two Projection Images and Its Application to 3D Reconstruction of Coronary Arterial Trees
,”
Med. Phys.
 0094-2405, Vol.
24
, No.
5
,
1997
, pp. 633–654.
25.
Chen
,
S.-Y. J.
and
Carroll
,
J. D.
, “
Kinematics and Deformation Analysis of 4D Coronary Arterial Trees Reconstructed from Cine Angiograms
,”
IEEE Trans. Med. Imaging
 0278-0062, Vol.
22
, No.
6
,
2003
, pp. 710–721.
26.
Millman
,
R. S.
And
Parker
,
G. D.
,
Elements Of Differential Geometry
,
Prentice-Hall, Inc.
,
Englewood Cliffs, Nj
,
1977
.
27.
Messenger
,
J. C.
,
Chen
,
S.-Y. J.
,
Carroll
,
J. D.
,
Burchenal
,
J. E. B.
,
Kioussopoulos
,
K.
, and
Groves
,
B. M.
, “
3D Coronary Reconstruction from Routine Single-Plane Coronary Angiograms: Clinical Validation and Quantitative Analysis of the Right Coronary Artery in 100 Patients
,”
Int. J. Card. Imaging
 0167-9899, Vol.
16
, No.
6
,
2000
, pp. 413–427.
28.
Chen
,
S.-Y. J.
,
Messenger
,
J. C.
, and
Carroll
,
J. D.
, “
Quantitative Analysis of Reconstructed 3-D Coronary Arterial Tree and Intracoronary Devices
,”
IEEE Trans. Med. Imaging
 0278-0062, Vol.
21
, No.
7
,
2002
, pp. 724–74.
29.
Nakanishi
,
T.
,
Kondoh
,
C.
,
Mshikawa
,
T.
,
Satomi
,
G.
,
Nakazawa
,
M.
,
Imai
,
Y.
, and
Momma
,
K.
, “
Intravascular Stents for Management of Pulmonary Artery and Right Ventricular Outflow Obstruction
,”
Heart Vessels
 0910-8327, Vol.
9
, No.
1
,
1994
, pp. 40–48.
30.
Perry
,
S. B.
and
Lock
,
J. E.
, “
Intracardiac Stent Implantation to Relieve Muscular and Non-Muscular Obstruction
,”
J. Am. Coll. Cardiol.
 0735-1097, Vol.
21
,
1993
, pp. 261A.
31.
Wu
,
H. C.
,
Chen
,
S. Y. J.
,
Shroff
,
S. G.
, and
Carroll
,
J. D.
, “
Stress Analysis Using Anatomically Realistic Coronary Tree
,”
Med. Phys.
 0094-2405, Vol.
30
, No.
11
,
2003
, pp. 2927–2936.
32.
Schievano
,
S.
,
Petrini
,
L.
,
Migliavacca
,
F.
,
Coats
,
L.
,
Nordmever
,
J.
,
Lurz
,
P.
,
Kham-badknoe
,
S.
,
Taylor
,
A. M.
,
Dubini
,
G.
, and
Bonhoeffer
,
P.
, “
Finite Element Analysis of Stent Deployment: Understanding Stent Fracture in Percutaneous Pulmonary Valve Implantation
,”
J. Interv. Cardiol.
 0896-4327, Vol.
20
, No.
6
,
2007
, pp. 546–554.
33.
Early
,
M.
,
Lally
,
C.
,
Prendergast
,
P. J.
, and
Kelly
,
D. J.
, “
Stress in Peripheral Arteries Following Stent Placement: A Finite Element Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
 1025-5842, Vol.
12
, No.
1
,
2009
, pp. 25–33.
34.
Garcia
,
J. A.
,
Chen
,
S. Y. J.
,
Hansgen
,
A.
,
Wink
,
O.
,
Movassaghi
,
B.
, and
Messenger
,
J. C.
, “
Rotational Angiography (RA) and Three-Dimensional Imaging (3DRA): An Available Clinical Tool
,”
Int. J. Card. Imaging
 0167-9899, Vol.
23
, No.
1
,
2007
, pp. 9–13.
35.
Garcia
,
J. A.
,
Chen
,
S. Y. J.
,
Messenger
,
J. C.
,
Casserly
,
I. P.
,
Hansgen
,
A.
,
Wink
,
O.
,
Movassaghi
,
B.
,
Klein
,
A. J.
, and
Carroll
,
J. D.
, “
Initial Clinical Experience of Selective Coronary Angiography Using One Prolonged Injection and 180° Rotational Trajectory
,”
Catheterization and Cardiovascular Interventions
, Vol.
70
, No.
2
,
2007
, pp. 190–196.
36.
Garcia
,
J. A.
,
Movassaghi
,
B.
,
Casserly
,
I. P.
,
Klein
,
A. J.
,
Chen
,
S. Y. J.
,
Messenger
,
J. C.
,
Hansgen
,
A.
,
Wink
,
O.
,
Groves
,
B. M.
, and
Carroll
,
J. D.
, “
Determination of Optimal Viewing Regions for X-Ray Coronary Angiography Based on a Quantitative Analysis of 3D Reconstruction Models
,”
Int. J. Card. Imaging
 0167-9899, Vol.
25
, No.
5
,
2009
, pp. 455–462.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal