Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Fatigue and Fracture of Medical Metallic Materials and Devices: 2nd VolumeAvailable to Purchase
By
K. L. Jerina
K. L. Jerina
1
Washington University
,
St. Louis, MO
Search for other works by this author on:
M. R. Mitchell
M. R. Mitchell
2
Northern Arizona University
,
Flagstaff, AZ
Search for other works by this author on:
Terry O'Riska Woods
Terry O'Riska Woods
3
USDA
,
Rockville, MD
Search for other works by this author on:
Brian T. Berg
Brian T. Berg
4
Boston Scientific
,
Maple Grove, MN
Search for other works by this author on:
ISBN:
978-0-8031-7501-3
No. of Pages:
150
Publisher:
ASTM International
Publication date:
2010

The use of intravascular stents in the femoropopliteal artery (FPA) continues to be controversial due to the potential fractures in the dynamic environment. The purpose of this study was to (1) develop a representative in-vitro model that simulates physiological motion of the FPA during knee and hip flexion and (2) use the model to characterize the types and ranges of stent distortion produced by extremity movement. This model eliminates inconsistencies often observed in cadaveric models and clinical subjects due to individual anatomical differences, and allows testing with large sample sizes in a controlled environment for variable (tubing length, material, diameter, and thickness) modification. A comparative evaluation of axial mechanical property and elasticity was conducted between the tubing intended to simulate arteries and the ex-vivo porcine carotid arteries, favoring the selection of silicone tubing. The model was assessed for its unstented and stented arterial bending and axial compression under three physiological motions: straight leg, walking (knee/hip flexion 70°/20°), and sitting/stair climbing (knee/hip flexion 90°/90°). Self-expanding nitinol stents implanted in the simulated mid-superficial femoral artery and popliteal artery (PA) of the model exhibit axial compression of 4.5±0.3 % and 7±0.3 % (knee/hip flexion 70°/20°), and 8.4±0.7 % and 8±0.2 % (knee/hip flexion 90°/90°). Stents implanted in the simulated PA exhibit bending of 40° and 74° from knee/hip angle changes to 70°/20° and to 90°/90°, respectively. The model demonstrated stent bending and compression as previously observed in cadaver studies. Additional analysis of stent motion (torsion, localized bending, radial compression) may be evaluated with more advanced imaging techniques and additional model development. The data generated in these analyses could support appropriate modes and parameters for stent fatigue testing, and better understanding of vascular device performance in the dynamic FPA.

1.
Schlager
,
O.
,
Dick
,
P.
,
Sabeti
,
S.
,
Amighi
,
J.
,
Mlekusch
,
W.
,
Minar
,
E.
, and
Schillinger
,
M.
, “
Long-Segment SFA Stenting—The Dark Sides: In-Stent Restenosis, Clinical Deterioration, and Stent Fractures
,”
J. Endovasc. Ther.
 1526-6028, Vol.
12
,
2005
, pp. 676–84.
2.
Duda
,
S. H.
,
Bosiers
,
M.
,
Lammer
,
J.
,
Scheinert
,
D.
,
Zeller
,
T.
,
Oliva
,
V.
,
Tielbeek
,
A.
,
Anderson
,
J.
,
Wiesinger
,
B.
,
Tepe
,
G.
,
Lansky
,
A.
,
Jaff
,
M. R.
,
Mudde
,
C.
,
Tielemans
,
H.
, and
Beregi
,
J.-P.
, “
Drug-Eluting and Bare Nitinol Stents for the Treatment of Atherosclerotic Lesions in the Superficial Femoral Artery: Long-Term Results from the SIROCCO Trial
,”
J. Endovasc. Ther.
 1526-6028, Vol.
13
,
2006
, pp. 701–10.
3.
Schillinger
,
M.
,
Sabeti
,
S.
,
Dick
,
P.
,
Amighi
,
J.
,
Mlekusch
,
W.
,
Schlager
,
O.
,
Loewe
,
C.
,
Cejna
,
M.
,
Lammer
,
J.
, and
Minar
,
E.
, “
Sustained Benefit at 2 Years of Primary Femoropopliteal Stenting Compared with Balloon Angioplasty with Optional Stenting
,”
Circulation
 0009-7322, Vol.
115
,
2007
, pp. 2745–2749.
4.
Smouse
,
H. B.
,
Nikanorov
,
A.
, and
LaFlash
,
D.
, “
Biomechanical Forces in the Femoropopliteal Arterial Segment
.”
Endovascular Today
, Vol.
4
,
2005
, pp. 60–66.
5.
Laird
,
J. R.
, “
Limitations of Percutaneous Transluminal Angioplasty and Stenting for the Treatment of Disease of the Superficial Femoral and Popliteal Arteries
,”
J. Endovasc. Ther.
 1526-6028, Vol.
13
,
2006
, pp. II30–II40.
6.
Scheinert
,
D.
,
Scheinert
,
S.
,
Sax
,
J.
,
Piorkowski
,
C.
,
Bräunlich
,
S.
,
Ulrich
,
M.
,
Biamino
,
G.
, and
Schmidt
,
A.
, “
Prevalence and Clinical Impact of Stent Fractures After Femoropopliteal Stenting
,”
J. Am. Coll. Cardiol.
 0735-1097, Vol.
45
,
2005
, pp. 312–315.
7.
Nikanorov
,
A.
,
Smouse
,
H. B.
,
Osman
,
K.
,
Bialas
,
M.
,
Shrivastava
,
S.
, and
Schwartz
,
L. B
, “
Fracture of self-expanding nitinol stents stressed in vitro under simulated intravascular conditions
,”
J. Vasc. Surg.
 0741-5214, Vol.
48
,
2008
, pp. 435–440.
8.
Cheng
,
C. P.
,
Wilson
,
N. M.
,
Hallett
,
R. L.
,
Herfkens
,
R. J.
, and
Taylor
,
C. A.
, “
In Vivo MR Angiographic Quantification of Axial and Twisting Deformations of the Superficial Femoral Artery Resulting from Maximum Hip and Knee Flexion
,”
J. Vasc. Interv. Radiol.
 1051-0443, Vol.
17
,
2006
, pp. 979–987.
9.
Walmsley
,
T.
, “
The Vertical Axes of the Femur and Their Relations. A Contribution to the Study of Erect Posture
,”
J. Anat.
 0021-8782, Vol.
67
,
1933
, pp. 284–300.
10.
Goodfellow
,
J.
and
O'Connor
,
J.
, “
The Mechanics of the Knee and Prosthesis Design
,”
J. Bone Jt. Surg.
 0021-9355, Vol.
60-B
,
1978
, pp. 358–369.
11.
Valentine
,
R. J.
and
Wind
,
G. G.
,
Anatomic Exposures in Vascular Surgery
, 2nd ed.,
Lippincott Williams & Wilkins
,
Philadelphia, PA
,
2003
.
12.
The
,
S. H.
,
Wilson
,
R. A.
,
Gussenhoven
,
E. J.
,
Pieterman
,
H.
,
Bom
,
K.
,
Roelandt
,
J. R.
, and
van Urk
,
H.
, “
Extrinsic Compression of the Superficial Femoral Artery at the Adductor Canal: Evaluation with Intravascular Sonography
,”
AJR, Am. J. Roentgenol.
 0361-803X, Vol.
159
,
1992
, pp. 117–120.
13.
Avisse
,
C.
,
Marcus
,
C.
,
Ouedraogo
,
T.
,
Delattre
,
J. F.
,
Menanteau
,
B.
, and
Flament
,
J. B.
, “
Anatomo-Radiological Study of the Popliteal Artery During Knee Flexion
,”
Surg. Radiol. Anat.
 0930-1038, Vol.
17
,
1995
, pp. 255–262.
14.
Callister
,
W. D.
, Jr.
,
Materials Science And Engineering
, 6th Ed.,
John Wiley & Sons, Inc.
,
New York, Ny
,
2003
.
15.
de Souza
,
R. R.
,
Ferraz de Carvalho
,
C. A.
,
Merluzzi Filho
,
T. J.
, and
Andrade Vieira
,
J. A.
, “
Functional Anatomy of the Perivascular Tissue in the Adductor Canal
,”
Gegenbaurs Morphol Jahrb
 0016-5840, Vol.
130
,
1984
, pp. 733–738.
16.
Wensing
,
P. J.
,
Scholten
,
F G.
,
Buijs
,
P. C.
,
Hartkamp
,
M. J.
,
Mali
,
W. P.
, and
Hillen
,
B.
, “
Arterial Tortuosity in the Femoropopliteal Region During Knee Flexion: A Magnetic Resonance Angiographic Study
,”
J. Anat.
 0021-8782, Vol.
187
,
1995
, pp. 133–139.
17.
Novotny
,
H.
, “
Splitting of the Adductor Canal: A Method of Improving Locally Collateral Circulation in Thromboangitis Obliterans
,”
Acta Chir. Scand.
 0001-5482, Vol.
99
,
1950
, pp. 332–340.
18.
Gray
,
H.
,
Anatomy of the Human Body
,
Lea & Febiger
,
Philadelphia, PA
,
1918
.
19.
Santana
,
D. B.
,
Armentano
,
R.L.
,
Zocalo
,
Y.
,
Perez Campos
,
H.
,
Cabrera Fischer
,
E. I.
,
Graf
,
S.
,
Saldias
,
M.
,
Silva
,
W.
, and
Alvarez
,
I.
, “
Functional Properties of Fresh and Cryopreserved Carotid and Femoral Arteries, and of Venous and Synthetic Grafts: Comparison with Arteries from Normotensive and Hypertensive Patients
,”
Cell Tissue Bank.
, Vol.
8
,
2007
, pp. 43–57.
This content is only available via PDF.
You do not currently have access to this chapter.

or Create an Account

Close Modal
Close Modal