Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 15th International Symposium
By
Bruce Kammenzind
Bruce Kammenzind
1
Bettis Laboratory
,
West Mifflin, PA,
USA
, Symposium Chairman and STP Editor
Search for other works by this author on:
Magnus Limbäck
Magnus Limbäck
editor
2
Westinghouse Electric Sweden
,
Västerås,
Sweden
,
Editorial Chairman and STP Editor
Search for other works by this author on:
ISBN-10:
0-8031-4514-4
ISBN:
978-0-8031-4514-6
No. of Pages:
136
Publisher:
ASTM International
Publication date:
2009

In pressurized water reactors, new operating conditions (higher burnup, new chemistry, etc.) can have an effect on the dimensional stability of the fuel assembly skeleton. Previous studies have shown that the fuel assembly growth is, among others parameters (free growth, creep), strongly driven by corrosion. Oxide layer and hydrides precipitation could both induce an increase of the dimensional parameters. The scope of the present study is, regardless of irradiation effect, to quantify and to understand the separate effects of hydrogen and oxide layers on the Zircaloy-4 dimensional changes. Experimental works have been performed in laboratory on stress relieved annealed (SRA) and recrystallized (RXA) Zircaloy-4 strips. First, the hydrogen impact on dimensional changes has been studied without the effect of the oxide layer. The measurements were performed at room temperature on strips previously pre-hydrided by the gaseous charging method. The hydrogen content of the samples was between 100 ppm and 2000 ppm. Results indicate a linear correlation between hydrogen content and length variation. RXA material is more affected by the hydrogen effect than the SRA material. Nevertheless, in comparison with data issued from out-of-reactor measurement, the impact of hydrides is not sufficient (with irradiation growth) to explain the post-irradiation examinations (PIE) results. To understand these differences, the oxide layer contribution must be quantified. Second, the impact of the oxide layer was therefore studied on RXA Zircaloy-4 strips. Corrosion tests have been performed in autoclave at 360°C in primary water (2 ppm Li-1000 ppm B-H2) on as-received and pre-hydrided materials. To obtain thicker oxide layer within a shorter duration, samples have been also oxidized in furnace at 415°C. Moreover, as no significant hydriding occurs during oxidation in air, we are able to characterize properly the specific effect of the oxide layer. As for hydrides' effect, an increase of strain is observed as the oxide thickness becomes thicker. The contributions of hydrides and oxide layer are then discussed with regard to the metallurgical properties of the alloy. Finally, all these results are compared with PIE observations. Free growth, hydride precipitation, and oxide thickness seem to be the three main parameters to explain the dimensional changes in Zircaloy-4 observed in reactor.

1.
Garzarolli
,
F.
,
Stehle
,
H.
, and
Steinberg
,
E.
, “
Behavior and properties of Zircaloys in power reactors: a short review of pertinent aspects in LWR fuel
,”
Zirconium in the Nuclear Industry: Eleventh International Symposium
, ASTM STP 1295,
ASTM
,
West Conshohocken, PA
,
1996
, pp. 12–32.
2.
Rogerson
,
A.
, and
Murgatroyd
,
R. A.
, “
Breakaway growth in annealed Zircaloy 2at 353 K and 553 K
,”
J. Nucl. Mater.
 0022-3115, Vol.
113
, Nos.
2–3
,
1983
, pp. 256–259.
3.
Holt
,
R. A.
, “
Mechanisms of irradiation growth of alpha-zirconium alloys
,”
J. Nucl. Mater.
 0022-3115, Vol.
159
,
1988
, pp. 310–338.
4.
Fidleris
,
V.
, “
The irradiation creep and growth phenomena
,”
J. Nucl. Mater.
 0022-3115, Vol.
159
,
1988
, pp. 22–42.
5.
Chapman
,
O. J. V.
,
McElroy
,
R. J.
, and
Sheldon
,
E. E.
, “
Irradiation creep and growth during proton and bombardement of Zircaloy 2 plate
,”
Zirconium in the Nuclear Industry, Sixth International Symposium
, ASTM STP 824,
ASTM International
,
West Conshohocken, PA
,
1984
, pp. 343–375.
6.
King
,
S. J.
,
Kesterson
,
R. L.
,
Yueh
,
K. Y.
,
Comstock
,
R. J.
,
Herwig
,
S. J.
, and
Ferguson
,
S. J.
, “
Impact of hydrogen on dimensional stability of Zirlo fuel assemblies
,”
Zirconium in the Nuclear Industry, 13th International Symposium
, ASTM STP 1423,
ASTM International
,
West Conshohocken, PA
,
2002
, pp. 471–489.
7.
Kesterson
,
R.
,
King
,
S.
, and
Comstock
,
R.
, “
Impact of hydrogen on dimensional stability of fuel assemblies
,” Proceedings of Light Water Reactor Fuel Performance Meeting, sponsored by ANS,
Park-City, Utah
, 10–13 April 2000.
8.
Seibold
,
A.
,
Garzarolli
,
F.
, and
Manzel
,
R.
, “
Material development for Siemens fuel elements
,” Proceedings of Light Water Reactor Fuel Performance Meeting, sponsored by ANS,
Park-City, Utah
, 10–13 April 2000.
9.
Donaldson
,
A. T.
, “
Growth in Zircaloy-4 fuel clad arising from oxidation at temperatures in the range 623 K to 723 K
,”
Zirconium in the Nuclear Industry: Ninth International Symposium
, ASTM STP 1132,
ASTM International
,
West Conshohocken, PA
,
1991
, pp. 177–197.
10.
Kammenzind
,
B. F.
,
Franklin
,
D. G.
,
Peters
,
H. R.
, and
Duffin
,
W. J.
, “
Hydrogen pick-up and redistribution in alpha-annealed Zircaloy 4
,”
Zirconium in the Nuclear Industry, Eleventh International Symposium
, ASTM STP 1295,
ASTM International
,
West Conshohocken, PA
,
1996
, pp. 338–370.
11.
Hillner
,
E.
,
Kass
,
J. N.
, and
Kearns
,
J. J.
, “
Hydrogen supercharging during corrosion of Zircaloy
,”
J. Nucl. Mater.
 0022-3115, Vol.
45
,
1972
, pp. 175–178.
12.
Domizzi
,
G.
,
Lanzani
,
L.
,
Coronel
,
P.
, and
Bruzzoni
,
P.
, “
Supercharging of Zircaloy 4
,”
J. Nucl. Mater.
 0022-3115, Vol.
246
,
1997
, pp. 247–251.
13.
Marino
,
G. P.
, “
Hydrogen supercharging in Zircaloy
,”
Mater. Sci. Eng.
 0025-5416, Vol.
7
, No.
6
,
1971
, pp. 335–341.
14.
Blat
,
M.
, and
Noel
,
D.
, “
Detrimental role of hydrogen on the corrosion rate of zirconium alloys
,”
Zirconium in the Nuclear Industry: Eleventh International Symposium
, ASTM STP 1295,
ASTM International
,
West Conshohocken, PA
,
1996
, pp. 319–337.
15.
Yamanaka
,
S.
,
Yoshioka
,
K.
,
Uno
,
M.
,
Katsura
,
M.
,
Anada
,
H.
,
Matsuda
,
T.
, and
Kobayashi
,
S.
, “
Thermal and mechanical properties of zirconium hydride
,”
J. Alloys Compd.
 0925-8388, Vol.
293–295
,
1999
, pp. 23–29.
16.
MacEwen
,
S. R.
,
Coleman
,
C. E.
,
Ells
,
C. E.
, and
Faber
,
J.
, Jr.
, “
Dilation of h.c.p. zirconium by interstitial deuterium
,”
Acta Metall.
 0001-6160, Vol.
33
, No.
5
,
1985
, pp. 753–757.
17.
Espagno
,
L.
,
Azou
,
P.
, and
Bastien
,
P.
, “
Variations de longueur et de densité accompagnant le chargement en hydrogène du Zirconium
,”
Compte Rendus à l'Académie des Sciences
 0002-3264, Vol.
247
,
1958
, pp. 83–86.
18.
Carpenter
,
G. J. C.
, “
The dilatational misfit of zirconium hydrides precipitated in zirconium
,”
J. Nucl. Mater.
 0022-3115, Vol.
48
,
1973
, pp. 264–266.
19.
Zhao
,
Z.
,
Blat-Yrieix
,
M.
,
Legris
,
A.
,
Morniroli
,
J. P.
,
Ambard
,
A.
,
Legras
,
L.
, and
Khin
,
Y.
, “
Characterization of zirconium hydrides and phase-field approach to a mesoscopic scale modelling of their precipitation
,” Vol.
5
, No.
3
,
2008
, Paper ID JAI101161.
20.
Steinberg
,
E.
,
Weidinger
,
H.
, and
Schaa
,
A.
, “
Analytical approaches and experimental verification to describe the influence of cold work and heat treatment on the mechanical properties of Zircaloy cladding tubes
,”
Zirconium in the Nuclear Industry, Sixth International Symposium
, ASTM STP 824,
ASTM International
,
West Conshohocken, PA
1984
, pp. 106–122.
21.
Baty
,
D.
,
Pavinich
,
W.
,
Dietrich
,
M.
,
Clevinger
,
G.
, and
Papazoglou
,
T.
, “
Deformation characteristics of cold-worked and recrystallized Zircaloy 4 cladding
,”
Zirconium in the Nuclear Industry, Sixth International Symposium
, ASTM STP 824,
ASTM International
,
West Conshohocken, PA
,
1984
, pp. 306–339.
22.
Turner
,
P. A.
,
Tome
,
C. N.
,
Christodoulou
,
N.
, and
Woo
,
C. H.
, “
A self-consistent model for polycrystals undergoing simultaneous irradiation and thermal creep
,”
Philos. Mag. A
 0141-8610, Vol.
79
, No.
10
,
1999
, pp. 2505–2524.
23.
Pilling
,
N. B.
, and
Bedworth
,
R. E.
, “
The oxidation of metals at high temperature
,”
Journal of the Institute of Metals
 0020-2975, Vol.
29
,
1923
, pp. 529–591.
24.
Parise
,
M.
,
Sicardy
,
O.
, and
Cailletaud
,
G.
, “
Modelling of the mechanical behaviour of the metal-oxide system during Zr oxidation
,”
J. Nucl. Mater.
 0022-3115, Vol.
256
No.
1
,
1998
, pp. 35–46.
25.
Lamy
,
M.
,
Ambard
,
A.
,
Bréchet
,
Y.
, and
Kerrec
,
O.
, “
Coupling corrosion and plasticity: the example of Zircaloy-4
,” Euromat 2001, Rimini.
26.
Bryner
,
J. S.
, “
The cyclic nature of corrosion of Zircaloy-4 in 633 K water
,”
J. Nucl. Mater.
 0022-3115, Vol.
82
,
1979
, pp. 84–101.
27.
Yilmazbayhan
,
A.
,
Motta
,
A. T.
,
Comstock
,
R. J.
,
Sabol
,
G. P.
,
Lai
,
B.
, and
Cai
,
Z.
, “
Structure of zirconium oxides formed in pure water studied with synchrotron radiation and optical microscopy: relation to corrosion rate
,”
J. Nucl. Mater.
 0022-3115, Vol.
324
,
2001
, pp. 6–22.
28.
Bossis
,
P.
,
Thomazet
,
J.
, and
Lefebvre
,
F.
, “
Study of the mechanisms controlling the oxide growth under irradiation: characterization of irradiated Zircaloy 4 and Zr-1Nb-O oxide scale
,”
Zirconium in the Nuclear Industry: Thirteenth International Symposium
, ASTM STP 1423,
ASTM Inernational
,
West Conshohcken, PA
,
2002
, pp. 190–221.
29.
Schefold
,
J.
,
Lincot
,
D.
,
Ambard
,
A.
, and
Kerrec
,
O.
, “
The cyclic nature of corrosion of Zr and Zr-Sn in high temperature water (633 K): a long term in situ impedance spectroscopic study
,”
J. Electrochem. Soc.
 0013-4651, Vol.
150
,
2003
, pp. B451–B461.
30.
Bouineau
,
V.
,
Ambard
,
A.
,
Bénier
,
G.
,
Pécheur
,
D.
,
Godlewski
,
J.
,
Fayette
,
L.
, and
Duverneix
,
T.
, “
A new model to predict the oxidation kinetics of zirconium alloys in PWR
” Vol.
5
, No.
5
,
2008
, Paper ID JAI101312.
31.
Parise
,
M.
,
Touet
,
I.
, and
Sicardy
,
O.
, “
Oxidation of zirconium alloys. Crystallographic texture of zirconia: interpretation and mechanical consequences
,”
Textures Microstruct.
 0730-3300, Vol.
30
,
1998
, pp. 247–263.
32.
Barberis
,
P.
,
Vermoyal
,
J. J.
,
Chabretou
,
V.
, and
Rebeyrolle
,
V.
, “
CASTA DIVA: Experiments and modelling of oxide induced deformation in nuclear components
” Vol.
5
, No.
5
,
2008
, Paper ID JAI101124.
33.
Shishov
,
V.
,
Peregud
,
M.
,
Nikulina
,
A.
,
Shebaldov
,
P.
,
Tselischev
,
A.
,
Novoselov
,
A.
,
Kobylyansky
,
G.
,
Ostrovsky
,
Z.
, and
Shamardin
,
V.
, “
Influence of zirconium alloy chemical composition on microstructure formation and irradiation induced growth
,”
Zirconium in the Nuclear Industry: thirteenth International Symposium
, ASTM STP 1423,
ASTM Inernational
,
West Conshohcken, PA
,
2002
, pp. 758–779.
34.
Griffiths
,
M.
, and
Gilbert
,
R. W.
, “
The formation of c-Component defects in zirconium alloys during neutron irradiation
,”
J. Nucl. Mater.
 0022-3115, Vol.
150
,
1987
, pp. 169–181.
35.
Griffiths
,
M.
, “
A review of microstructure evolution in Zirconium alloys during irradiation
,”
J. Nucl. Mater.
 0022-3115, Vol.
159
,
1988
, pp. 190–218.
36.
De Carlan
,
Y.
,
Regnard
,
Y.
,
Griffith
,
M.
,
Gilbon
,
D.
, and
Lemaignan
,
C.
, “
Influence of iron in the nucleation of c component dislocation loops in irradiated Zircaloy 4
,”
Zirconium in the Nuclear Industry: Eleventh International Symposium
, ASTM STP 1295,
ASTM Inernational
,
West Conshohcken, PA
,
1996
, pp. 638–653.
37.
Garde
,
A.
,
Smith
,
G.
, and
Pirek
,
R.
, “
In PWR irradiation performance of dilute tin zirconium advanced alloys
,”
Zirconium in the Nuclear Industry: Thirteenth International Symposium
, ASTM STP 1423,
ASTM Inernational
,
West Conshohcken, PA
,
2002
, pp. 490–506.
38.
Bossis
,
P.
,
Verhaerghe
,
B.
,
Doriot
,
S.
,
Gilbon
,
D.
,
Chabretou
,
V.
,
Dalmais
,
A.
,
Mardon
,
J. P.
,
Blat
,
M.
, and
Miquet
,
A.
, “
In PWR comprehensive study of high burnup corrosion and growth behavior of M5® and recrystallized low-tin Zircaloy 4
,” Paper ID JAI101314.
39.
Yvon
,
P.
,
Diz
,
J.
, and
Ligneau
,
N.
, “
Irradiation creep and growth of guide thimble alloys
,”
Proceedings of the International Symposium Contribution of Materials Investigation to the Resolution of Problems Encountered in PWR
, Fontevraud IV, September 14–18, 1998,
SFEN
,
Paris
,
1998
, Vol.
2
, pp. 1241–1252.
40.
Adamson
,
R. B.
, “
Effects of neutron irradiation on microstructure and properties of Zircaloy
,”
Zirconium in the Nuclear Industry: Twelfth International Symposium
, ASTM STP 1354,
ASTM Inernational
,
West Conshohcken, PA
,
2000
, pp. 15–31.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal