Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Effects of Radiation on Materials: 23rd International Symposium
By
Randy G. Lott
Randy G. Lott
1
Pittsburgh, Pennsylvania, Symposium Chair and Editor
Search for other works by this author on:
Jeremy T. Busby
Jeremy T. Busby
2
Oak Ridge National Laboratory
,
Symposium Co-Chair and Editor
Search for other works by this author on:
ISBN-10:
0-8031-3421-5
ISBN:
978-0-8031-3421-8
No. of Pages:
240
Publisher:
ASTM International
Publication date:
2008

Our understanding of the evolution of extended defects during irradiation has progressed considerably since 1990 following the proposal of production bias by Bachu Singh and C. H. Woo. One of the important phenomena underlying this concept is that self-interstitials and interstitial clusters can migrate a long distance via one-dimensional motion. There have been a number of indirect experimental evidences supporting this mode of migration. However, the direct evidence has not necessarily been sufficient. In this paper, we revisit our former experimental results of in-situ observation of ion irradiation damage from the stand point of an internal probe for detecting point defect fluxes in an irradiation environment or those coming from nearby cascades. Surfaces, giving rise to specimen size effects, preexisting dislocations, intentionally preintroduced vacancy loops with stacking fault, irradiation induced vacancy clusters and loops, precipitates and precipitate-matrix interfaces, etc., are utilized to monitor the influx of point defects, particularly those of interstitials nature. Some of the reanalysis of the former results will be presented.

1.
Kiritani
,
M.
and
Takata
,
H.
, “
Dynamic Studies of Defect Mobility Using High Voltage Electron Microscopy
,”
J. Nucl. Mater.
 0022-3115, Vols.
69
and
70
,
1978
, pp. 277–309.
2.
Ishino
,
S.
, “
Time and Temperature Dependence of Cascade Induced Defect Production in In-situ Experiments and Computer Simulation
,”
J. Nucl. Mater.
 0022-3115, Vol.
206
,
1993
, pp. 139–155.
3.
Ishino
,
S.
,
Kawanishi
,
H.
,
Fukuya
,
K.
, and
Muroga
,
T.
, “
In-situ Studies of the Effects of Ion Beams on Materials Using the Electron Microscope Ion Beam Interface
,”
IEEE Trans. Nucl. Sci.
 0018-9499, Vol.
NS-30
,
1983
, p. 1255–1258.
4.
Muroga
,
T.
,
Hirooka
,
K.
, and
Ishino
,
S.
, “
Direct Observation of Cascade Defect Formation at Low Temperature in Ion Irradiated Metals
,”
Effects of Radiation on Materials, 12th International Symposium
, ASTM STP 870,
Garner
F. A.
and
Perrin
J. S.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1985
, pp. 407–418.
5.
Ishino
,
S.
,
Sekimura
,
N.
, and
Muroga
,
T.
, “
The Effect of Cascade and Helium on Microstructural Evolution under Fusion Irradiation
,”
Nucl. Eng. & Design/Fusion
 0029-5493, Vol.
2
,
1985
, pp. 3–18.
6.
Ishino
,
S.
and
Sekimura
,
N.
, “
Role of Charged Particle Irradiations in the Study of Radiation Damage Correlation
,”
J. Nucl. Mater.
 0022-3115, Vol.
174
,
1990
, pp. 158–167.
7.
Ishino
,
S.
,
Sekimura
,
N.
,
Sakaida
,
H.
, and
Kanzaki
,
Y.
, “
In-situ Observation of Heavy Ion Radiation Damage in Some FCC Metals
,”
Mater. Sci. Forum
 0255-5476, Vols.
97–99
,
1992
, pp. 165–182.
8.
Ishino
,
S.
, “
A Review of In-situ Observation of Defect Production with Energetic Heavy Ions
,”
J. Nucl. Mater.
 0022-3115, Vol.
251
,
1997
, pp. 225–236.
9.
Abe
,
H.
,
Sekimura
,
N.
, and
Yang
,
Y.
, “
Stability and Mobility of Defect Clusters in Copper under Displacement Cascade Conditions
,”
J. Nucl. Mater.
 0022-3115, Vol.
323
,
2003
, pp. 220–228.
10.
Abe
,
H.
,
Sekimura
,
N.
, and
Tadokoro
,
T.
, “
Stability and Mobility of Interstitial-Type Defect Clusters Generated from Displacement Cascades in Copper and Gold by In-situ Transmission Electron Microscopy
,”
Mater. Trans.
 1345-9678, Vol.
46
,
2005
, pp. 433–439.
11.
Ishino
,
S.
,
Fukuya
,
K.
,
Muroga
,
T.
,
Sekimura
,
N.
, and
Kawanishi
,
H.
, “
In-situ Micro structural Observation of Radiation Damage in Nickel Produced by Energetic Heavy Particles
,”
J. Nucl. Mater.
 0022-3115, Vols.
122
and
123
,
1984
, pp. 597–601.
12.
Muroga
,
T.
,
Fukuya
,
K.
,
Kawanishi
,
H.
, and
Ishino
,
S.
, “
Direct Comparison of Electron and Self-Ion Damage in Aluminum as a Fusion Neutron Simulation Study
,”
J. Nucl. Mater.
 0022-3115, Vols.
103
and
104
,
1981
, pp. 1349–1354.
13.
Kiritani
,
M.
, “
Defect Interaction Processes Controlling the Accumulation of Defects Produced by High Energy Recoils
,”
J. Nucl. Mater.
 0022-3115, Vol.
251
,
1997
, p. 237–251.
14.
Sekimura
,
N.
,
Kanzaki
,
Y.
,
Okada
,
S. R.
,
Masuda
,
T.
, and
Ishino
,
S.
, “
Cascade Damage Formation in Gold under Self-Ion Irradiation
,”
J. Nucl. Mater.
 0022-3115, Vols.
212–215
,
1994
, pp. 160–163.
15.
Sekimura
,
N.
, “
Primary Knock-on Atom Energy Dependence of Cascade Damage Formation and Interaction
,”
J. Nucl. Mater.
 0022-3115, Vols.
233–237
,
1996
, pp. 1080–1084.
16.
Sekimura
,
N.
,
Kanzaki
,
Y.
,
Ohtake
,
N.
,
Saeki
,
J.
,
Shirao
,
Y.
,
Ishino
,
S.
,
Iwata
,
T.
,
Iwase
,
A.
, and
Tanaka
,
R.
, “
High Energy Cascades in Gold as Studied in High Energy Self-Ion Irradiation
,”
J. Nucl. Mater.
 0022-3115, Vols.
271–272
,
1999
, pp. 68–72.
17.
Ishino
,
S.
,
Sekimura
,
N.
,
Hirooka
,
K.
, and
Muroga
,
T.
, “
In-situ Observation of Cascade Damage in Gold under Heavy Ion Irradiation at High Temperature
,”
J. Nucl. Mater.
 0022-3115, Vols.
141
and
143
,
1986
, pp. 776–780.
18.
Sakaida
,
H.
,
Sekimura
,
N.
, and
Ishino
,
S.
, “
In-situ Observation of Cascade Damage in Nickel and Copper under Heavy Ion Irradiation
,”
J. Nucl. Mater.
 0022-3115, Vols.
179–181
,
1991
, pp. 928–930.
19.
Trinkaus
,
H.
,
Singh
,
B. N.
, and
Foreman
,
A. J. E.
, “
Impact of Glissile Interstitial Loop Production in Cascades on Defect Accumulation in the Transient
,”
J. Nucl. Mater.
 0022-3115, Vol.
206
,
1993
, pp. 200–211.
20.
Woo
,
C. H.
and
Singh
,
B. N.
, “
The Concept of Production Bias and Its Possible Role in Defect Accumulation under Cascade Damage Conditions
,”
Phys. Status Solidi
 0031-8957, Vol.
B159
,
1990
, p. 609–616.
21.
Woo
,
C. H.
and
Singh
,
B. N.
, “
Production Bias due to Clustering of Point Defects in Irradiation-Induced Cascades
,”
Philos. Mag.
 1478-6435, Vol.
A65
,
1992
, p. 889–912.
22.
Golubov
,
S. I.
,
Singh
,
B. N.
, and
Trinkaus
,
H.
, “
Defect Accumulation in FCC and BCC Metals and Alloys under Cascade Damage Conditions — Towards a Generalization of the Production Bias Model
,”
J. Nucl. Mater.
 0022-3115, Vol.
276
,
2000
, pp. 78–89.
23.
Osetsky
,
Yu. N.
,
Bacon
,
D. J.
,
Serra
,
A.
,
Singh
,
B. N.
,
Golubov
,
S. I.
, “
Stability and Mobility of Defect Clusters and Dislocation Loops in Metals
,”
J. Nucl. Mater.
 0022-3115, Vol.
276
,
2000
, pp. 65–77.
24.
Soneda
,
N.
and
Diaz de la Rubia
,
T.
, “
Defect Production, Annealing Kinetics and Damage Evolution in Alpha-Fe: an Atomic-Scale Computer Simulation
,”
Philos. Mag.
 1478-6435, Vol.
78
,
1998
, pp. 995–1019.
25.
Soneda
,
N.
and
Diaz de la Rubia
,
T.
, “
Migration Kinetics of the Self-Interstitial Atom and Its Clusters in BCC Fe
,”
Philos. Mag.
 1478-6435, Vol.
81
,
2001
, pp. 331–343.
26.
Fukumura
,
A.
,
Sekimura
,
N.
, and
Ishino
,
S.
, “
Time Development of Cascades by the Binary Collision Approximation Code
,”
J. Nucl. Mater.
 0022-3115, Vol.
179–181
,
1991
, p. 897–900.
27.
Soneda
N.
, private communication,
2001
.
28.
Ishino
,
S.
,
Sekimura
,
N.
, and
Muroga
,
T.
, “
In-situ Observation of Cascade Clusters in Gold under Energetic Heavy Ion Irradiation
,”
Mater. Sci. Forum
 0255-5476, Vol.
15–18
,
1987
, pp. 1105–1110.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal