Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Heat-Air-Moisture Transport: Measurements on Building Materials
By
P. Mukhopadhyaya
P. Mukhopadhyaya
1
National Research Council
?
Ottawa, ON,
Canada
Search for other works by this author on:
M. K. Kumaran
M. K. Kumaran
1
National Research Council
?
Ottawa, ON,
Canada
Search for other works by this author on:
ISBN-10:
0-8031-3422-3
ISBN:
978-0-8031-3422-5
No. of Pages:
119
Publisher:
ASTM International
Publication date:
2007

The physical models which form the basis for the different software tools used to predict heat, air, and moisture response of building envelopes seem quite diverse. For example, various “potentials” are used, and each individual potential demands apparently different properties. Anyhow, when digging into the physics and confronting the theory with what is measurable, then an array of eight basic material characteristics appear, all backed by an experimental rationale. Adapting that array to the potentials in use is not a question of creating new properties but of implementing the basic ones into potential-adapted expressions. A different problem, however, is that these basic properties are macroscopic in nature, i.e., represent the complexity of a material at the micro-scale by one single “average” number. That introduces restrictions as to the use of the property values measured experimentally. Hence, those restrictions are typically mixed up with the inability of the actual software packages to represent reality in full detail. Too many times, assumed incorrectness of the property values are blamed for causing the differences found between the predicted and real heat, air, moisture response of envelope parts. That inability, instead, should convince researchers and building engineers that the way to gain a well balanced understanding of the heat, air, and moisture response of envelopes is not by modeling only but by combining modeling with testing and field experience.

1.
Hirsch
,
M.
,
1932
,
Trocknungstechnik
,
Springer Verlag
,
Berlin/Gýttingen/Heidelberg
2.
Krischer
,
O.
, and
Kröll
,
K.
,
Die wissenschaftlichen Grundlagen der Trocknungstechnik
,
Springer Verlag
,
Berlin/Göttingen/Heidelberg
,
1957
.
3.
Lykow
,
A. W.
,
Transporterscheinungen in kapillarporösen Körpern
,
Akademie Verlag
,
Berlin
,
1955
.
4.
De Vries
,
D. A.
, “
Simultaneous Transfer of Heat and Moisture in Porous Media
,”
EOS Trans. Am. Geophys. Union
 0096-3941, Vol.
39
, No.
5
,
10
1958
.
5.
Glaser
,
H.
,
Wärmeleitung und Feuchtigkeitsdurchgang durch Kaltraumisolierungen
,
Kältetechnik
, Vol.
3
,
1958
, pp. 86–91.
6.
Glaser
,
H.
,
Vereinfachte Berechnung des Dampfdiffusion durch geschichtete Wände bei Ausscheiden von Wasser und Eis
,
Kältetechnik
, Vol.
11
,
1959
, pp. 358–364,
Kältetechnik
, Vol.
12
,
1959
, pp. 386–390.
7.
Glaser
,
H.
,
Grafisches Verfahren zur Untersuchung von Diffusionsvorgénge
,
Kältetechnik
, Vol.
10
,
1959
, pp. 345–349.
8.
Seiffert
,
K.
,
Wasserdampfdiffusion im Bauwesen
,
Bauverlag
,
Wiesbaden/Berlin
,
1967
.
9.
Rowley
,
F. B.
, “
A Theory Covering the Transfer of Vapor Through Materials
,”
ASHVE Transactions
, No.
1134
,
07
1938
.
10.
Vos
,
B. H.
, “
Internal Condensation in Structures
,”
Build. Sci.
 0007-3628, Vol.
3
,
1969
, pp. 191–206.
11.
Vos
,
B. H.
, “
Condensation in Flat Roofs Under Nonsteady State Conditions
,”
Build. Sci.
 0007-3628, Vol.
7
,
1971
, pp. 7–15.
12.
Hens
,
H.
, “
Theoretical and Experimental Study of the Hygrothermal Behavior of Building and Insulating Materials During Interstitial Condensation and Drying, with Application on Flat Roofs
,” Ph.D. Thesis,
K. U. Leuven (in Dutch)
,
1975
.
13.
Van der Kooi
,
J.
, “
Moisture Transport in Cellular Concrete Roofs
,” Ph.D. Thesis,
Uitgeverij Waltman
, Delft,
1971
.
14.
Nielsen
,
A. F.
, “
Moisture Distribution in Cellular Concrete During Heat and Moisture Transfer
,” Ph.D. Thesis,
Thermal Insulation Laboratory, Technical University of Denmark
,
1974
.
15.
Kieβl
,
K.
, “
Kapillarer und dampformiger Feuchtetransport in mehrschichtigen Bauteilen
,” Ph.D. Thesis,
Universität und Gesamthochschüle Essen
,
1983
.
16.
Crausse
,
P.
, “
Etude fondamentale des transfers couples de chaleur et d'humidité milieu poreux non-satur
é,” Thèse de doctorat,
ENSEEIHT
, Toulouse,
1983
.
17.
Kohonen
,
R.
, “
A Method to Analyze the Transient Hygrothermal Behavior of Building Materials and Components
,”
Technical Research Center of Finland (VTT)
, Publication 21,
1984
.
18.
Duforestel
,
T.
, “
Bases métrologiques et modèles pour la simulation du comportement hygrothermique des composants du bâtiment
,” Thése de doctorat,
Ecole Nationale des Ponts et des Chaussées
, Paris,
1992
.
19.
Karagiozis
,
A.
, “
Overview of the 2-D Hygrothermal Heat-moisture Transport Model Latenite
,” Internal IRC/BPL report,
IRC/NRC
,
1993
.
20.
Hens
,
H.
, “
Heat, Air and Moisture Transfer in Insulated Envelope Parts, Modeling
,” Vol.
1
of the final report of the IEA-ECBCS Annex 24.
ACCO
, Leuven,
1996
.
21.
Matsumoto
,
M.
and
Nagai
,
H.
, “
An Analysis of Moisture Variations in Building Walls by Quasi Linearized Equations for Nonlinear Heat and Moisture Transport
,”
Proceedings of the CIB-W40 Meeting
,
Boras, Sweden
,
1985
.
22.
Grünewald
,
J.
, “
Diffusiver und konvektiver Stoff- und energietransport in Kapillar-porösen Baustoffen
,” Ph.D. Thesis,
Technische Universität Dresden
,
1997
.
23.
Hagentoft
,
C. E.
, “
Hamstad-Modelling
,” final report EU Hamstad Project,
2002
.
24.
Maref
,
W.
,
Kumaran
,
M. K.
,
Lacasse
,
M. K.
,
Swinton
,
M. C.
, and
Van Reenen
,
D.
, “
Advanced Hygrothermal Model-HygIRC, LMBF
,”
Proceedings of the 12th International Heat Transfer Conference
”,
Grenoble
,
2002
, pp. 1–6.
25.
Rode
,
C.
, “
Combined Heat and Moisture Transfer in Building Constructions
,”
Thermal Insulation Laboratory, Technical University of Denmark
,
1990
.
26.
Künzel
,
H. M.
, “
Verfahren zure in- und zweidimensionalen Berechnung des gekoppelten Wärme-Und Feuchtetransports in Bauteilen mit einfachen Kennwerte
,” Ph.D. Thesis,
Universität Stuttgart
,
1998
.
27.
Janssens
,
A.
, “
Reliable Control of Interstitial Condensation in Lightweight Roof Systems
,” Ph.D. Thesis,
K. U. Leuven
,
1998
.
28.
Krus
,
M.
, “
Feuchtetransport- Und Speicherkoeffizienten poröser mineralischer Baustoffe. Theoretische Grundlagen und neue Meβtechniken
,” Ph.D. Thesis,
Universität Stuttgart
,
1995
.
29.
Descamps
,
F.
, “
Continuum and Discrete Modeling of Isothermal Water and Air Transport in Porous Media
,” Ph.D. Thesis,
K. U. Leuven
,
1997
.
30.
Roels
,
S.
,
Carmeliet
,
J.
, and
Hens
,
H.
, “
Moisture Transfer Properties and Material Characterization
,”
EU Hamstad Project
, Final Report WP1,
2002
.
31.
Hens
,
H.
, “
The Vapor Diffusion Resistance and Air Permeance of Masonry and Roo Systems
,”
Buildings and Environment
 0360-1323, Vol.
41
,
06
2006
, pp. 745–755.
32.
Qiu
,
X.
, “
Moisture Transport Across Interfaces Between Building Materials
,” Ph.D. Thesis,
Concordia University
,
2003
.
33.
Blocken
,
B.
, “
Wind-Driven Rain on Buildings: Measurements, Numerical Modeling and Applications
,” Ph.D. Thesis,
K. U. Leuven
,
2004
.
34.
Janssen
,
H.
and
Carmeliet
,
J.
, “
Hygrothermal Simulation of Masonry Under Atmospheric Excitation
,”
Research in Building Physics and Building Engineering
,
Fazio
P.
,
Ge
H.
,
Rao
J.
, and
Desmarais
G.
, Eds.,
Taylor and Francis
,
London/Leiden/New York/Philadelphia/Singapore
,
2006
, pp. 77–83.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal