Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Fatigue and Fracture Mechanics: 35th VolumeAvailable to Purchase
By
Richard E. Link
Richard E. Link
1
United States Naval Academy
Search for other works by this author on:
Kamran M. Nikbin
Kamran M. Nikbin
2
Imperial College
Search for other works by this author on:
ISBN-10:
0-8031-3406-1
ISBN:
978-0-8031-3406-5
No. of Pages:
518
Publisher:
ASTM International
Publication date:
2007

The creep strength of weldment for high Cr ferritic steels decreases due to Type IV damages in the heat affected zone during long-term services at high temperatures. It is important to predict initiation and growth of creep voids and cracks in weldment. This paper clarified the Type IV crack initiation and growth properties in fine-grained HAZ of weldments for tungsten strengthened high Cr steels. On the basis of experimental results, the computational simulation for Type IV crack growth behavior was conducted. The effect of multiaxial stress condition on vacancy diffusion and crack initiation was discussed.

1.
Bell
,
K.
, “
Elevated Temperature Midlife Weldment Cracking (Type IV) - A Review
,” TWI Report 597/1977,
The Welding Institute
, Abington, Cambridge,
1997
.
2.
Masuyama
,
F.
,
Matsui
,
M.
, and
Komai
,
N.
, “
Creep Rupture Behavior of Advanced 9–12 %Cr Steel Weldment
,”
Key Eng. Mater.
 1013-9826, Vols.
171–174
,
2000
, pp. 99–107.
3.
Tabuchi
,
M.
,
Watanabe
,
T.
,
Kubo
,
K.
,
Matsui
,
M.
,
Kinugawa
,
J.
, and
Abe
,
F.
, “
Creep Crack Growth Behavior in the HAZ of Weldments of W Containing High Cr Steel
,”
Int. J. Pressure Vessels Piping
 0308-0161, Vol.
78
, Nos.
11
and
12
,
2001
, pp. 779–784.
4.
Yokobori
,
A. T.
 Jr.
,
Takamori
,
S.
,
Yokobori
,
T.
,
Hasegawa
,
Y.
,
Kubota
,
K.
, and
Hidaka
,
K.
, “
Mechanical Behavior and Strengthening Mechanism of W Containing 9–12 %Cr Steels Under Creep Condition for a Cracked Specimen
,”
Key Eng. Mater.
 1013-9826, Vols.
171–174
,
2000
, pp. 131–138.
5.
Standard Test Method for Measurement of Creep Crack Growth Rates in Metals
, ASTM Standard E 1457-00,
ASTM International
,
West Conshohocken, PA
,
2000
.
6.
Webster
,
G. A.
and
Ainsworth
,
R. A.
, “
High Temperature Component Life Assessment
,”
Chapman & Hall
,
London
,
1994
.
7.
Ernst
,
H. A.
, “
Unified Solution for J Ranging Continuously from Pure Bending to Pure Tension
,” ASTM STP 791,
1983
, pp. 499–519.
8.
Shibli
,
I. A.
and
Hamata
,
N. LeMat
, “
Creep Crack Growth in P22 and P91 Welds—Overview from SOTA and HIDA Projects
,”
Int. J. Pressure Vessels Piping
 0308-0161, Vol.
78
, Nos.
11
and
12
,
2001
, pp. 785–793.
9.
Nikbin
,
K. M.
,
Smith
,
D. J.
, and
Webster
,
G. A.
, “
An Engineering Approach to the Prediction of Creep Crack Growth
,”
Trans. ASME, J. Eng. Mater. Tech.
, Vol.
108
, No.
2
,
1986
, pp. 186–191.
10.
Hsu
,
T. R.
and
Zhai
,
Z. H.
, “
A Finite Element Algorithm for Creep Crack Growth
,”
Eng. Fract. Mech.
 0013-7944, Vol.
20
, No.
3
,
1984
, pp. 521–533.
11.
Yatomi
,
M.
,
Nikbin
,
K. M.
, and
O'Dowd
,
N. P.
, “
Creep Crack Growth Prediction Using a Damage Based Approach
,”
Int. J. Pressure Vessels Piping
 0308-0161, Vol.
80
, Nos.
7
and
8
,
2003
, pp. 573–583.
12.
Leeuwen
,
H. P.
, “
The Application of Fracture Mechanics to Creep Crack Growth
,”
Eng. Fract. Mech.
 0013-7944, Vol.
9
, No.
4
,
1977
, pp. 951–974.
13.
Yokobori
, ,
A. T.
 Jr.
,
Nemoto
,
T.
,
Satoh
,
K.
, and
Yamada
,
T.
, “
Numerical Analysis on Hydrogen Diffusion and Concentration in Solid with Emission Around the Crack Tip
,”
Eng. Fract. Mech.
 0013-7944, Vol.
55
, No.
1
,
1996
, pp. 47–60.
This content is only available via PDF.
You do not currently have access to this chapter.

or Create an Account

Close Modal
Close Modal