Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Fatigue and Fracture of Medical Metallic Materials and Devices
By
M. R. Mitchell
M. R. Mitchell
1
Northern Arizona University
,
Flagstaff, Arizona
Search for other works by this author on:
Kenneth L. Jerina
Kenneth L. Jerina
2
Washington University at St. Louis
,
St. Louis, Missouri
Search for other works by this author on:
ISBN-10:
0-8031-4511-X
ISBN:
978-0-8031-4511-5
No. of Pages:
124
Publisher:
ASTM International
Publication date:
2007

Preliminary investigations to apply thermoelastic stress analysis (TSA) to Nitinol selfexpanding stents are described. Tests conducted at high resolution indicated that a viable thermoelastic signal can be obtained from the fine stent structure. It is shown that it is possible to digitally compensate for errors arising from motion at this high resolution. High variability in Nitinol's material properties with stress and temperature result in a complex thermoelastic response. Correction strategies are proposed to account for variation in material properties and to minimize errors due to thermal variations in order to derive calibration factors for the austenite and martensite material phases. The greatest challenge is identified as calibrating the thermoelastic response from the radially loaded stent structure where it is likely the material is highly inhomogeneous.

1.
DePalma
,
R. G.
, “
Atherosclerosis—Pathology, Pathogenesis and Medical Management
,”
Vascular Surgery
,
Moore
W. S.
, Ed.,
Saunders Co.
,
Philadelphia
,
1998
, pp. 85–93.
2.
Mackey
,
J.
, and
Mensah
,
G.
,
The Atlas of Heart Disease and Stroke
,
World Health Organization publications
,
Washington, DC
,
2004
, p. 48.
3.
Fuchs
,
J. C.
, “
Atherogenesis and the Medical Management of Atherosclerosis
,”
Vascular Surgery
,
Rutherford
R. B.
, Ed.,
W. B. Saunders
,
Philadelphia
,
1995
, pp. 222–233.
4.
Gruntzig
,
A. R.
, “
Percutaneous Transluminal Coronary Angioplasty
,”
Vascular and Interventional Radiology
, 3rd Ed.,
Adams
,
H. L.
Ed.,
Little, Brown and Co.
,
Boston
,
1983
, pp. 2087–2097.
5.
European Standard EN12006-3, “
Nonactive Surgical Implants—Particular Requirements for Cardiac and Vascular Implants—Part 3: Endovascular Devices
”.
6.
Dulieu-Barton
,
J. M.
, and
Stanley
,
P.
, “
Development and Applications of Thermoelastic Stress Analysis
,”
J. Strain Anal. Eng. Des.
 0309-3247, Vol.
33
, No.
2
,
1998
, pp. 93–104.
7.
Etave
,
F.
,
Finet
,
G.
,
Boivin
,
M.
,
Boyer
,
J. C.
,
Rioufol
,
G.
, and
Tollet
,
G. J.
, “
Mechanical Properties of Coronary Stents Determined by Using Finite Element Analysis
,”
J. Biomech.
 0021-9290, Vol.
34
, No.
8
,
2001
, pp. 803–811.
8.
Migliavacca
,
F.
,
Petrini
,
L.
,
Colombo
,
M.
,
Auricchio
,
F.
, and
Pietrabissa
,
R.
, “
Mechanical behavior of Coronary Stents Investigated Through the Finite Element Method
,”
J. Biomech.
 0021-9290, Vol.
35
, No.
6
,
2002
, pp. 803–811.
9.
Tan
,
L. B.
,
Web
,
D. C.
,
Kormi
,
K.
, and
Al-Hassani
,
S. T.
, “
A Method for Investigating the Mechanical Properties of Intracoronary Stents Using Finite Element Numerical Simulation
,”
Int. J. Cardiol.
 0167-5273, Vol.
78
, No.
1
,
2001
, pp. 51–67.
10.
Pitarresi
,
G.
, and
Patterson
,
E. A.
, “
A Review of the General Theory of Thermoelastic Stress Analysis
,”
J. Strain Anal. Eng. Des.
 0309-3247, Vol.
38
,
2003
, pp. 405–418.
11.
Calvert
,
G.
,
Smith
,
G.
, and
Thomson
,
B.
, “
The Use of Thermoelastic Stress Analysis to Identify Defects in Polymeric Materials
,”
Insight
 1060-135X, Vol.
46
, No.
9
,
2004
, pp. 550–553.
12.
Refior
,
H. J.
,
Schidlo
,
C.
,
Plitz
,
W.
, and
Heining
,
S.
, “
Photoelastic and Thermoelastic Measurement of Stress on the Proximal Femur Before and After Implantation of a Hip Prosthesis with Retention of Femoral Neck
,”
Orthopedics
 0147-7447, Vol.
25
, No.
5
,
2002
, pp. 505–511.
13.
Thomson
,
J. R.
, (Lord Kelvin), “
On the Dynamical Theory of Heat
,”
Trans. R. Soc (Edinburgh)
, Vol.
20
,
1853
, pp. 261–283.
14.
Quinn
,
S.
, and
Dulieu-Barton
,
J. M
., “
Identification of the Sources of Non-adiabatic Behaviour for Practical Thermoelastic Stress Analysis
,”
J. Strain Anal. Eng. Des.
 0309-3247, Vol.
37
, No.
1
,
2002
, pp. 59–71.
15.
Wong
,
A. K.
,
Jones
,
R.
, and
Sparrow
,
J. G.
, “
Thermoelastic Constant or Thermoelastic Parameter
,”
J. Phys. Chem. Solids
 0022-3697, Vol.
48
,
1987
, pp. 749–753.
16.
Eaton-Evans
,
J.
,
Dulieu-Barton
,
J. M.
,
Little
,
E. G.
, and
Brown
,
I. A.
, “
Thermoelastic Studies on Nitinol Stents
,”
J. Strain Anal. Eng. Des.
 0309-3247, in press.
17.
Dulieu-Smith
, “
Alternative Calibration Techniques for Quantitative Thermoelastic Stress Analysis
,”
Strain
, Vol.
31
,
1995
, pp. 9–16.
18.
Lesniak
,
J. R.
,
Boyce
,
B. R.
, and
Sandor
,
B. I.
, “
Thermographic Stress analysis/NDE Via Focal Plane Array Detectors
” NASA Contract Report CR-NASA-19262,
1991
.
19.
Sittner
,
P.
,
Liu
,
Y.
, and
Novak
,
V.
, “
On the Origin of Luder-Like Deformation on NiTi Shape Memory Alloys
,”
J. of Mech., and Phys. of Solids
 0022-5096, Vol.
53
,
2005
, pp. 1719–1746.
20.
Machin
,
A. S.
,
Sparrow
,
J. G.
, and
Stimson
,
M.-G.
, “
Mean Stress Dependence of the Thermoelastic Constant
,”
Strain
, Vol.
23
,
1987
, pp. 27–29.
21.
Wong
,
A. K.
,
Jones
,
R.
, and
Sparrow
,
J. G.
, “
Thermoelastic Constant or Thermoelastic Parameter
,”
J. Phys. Chem. Solids
 0022-3697, Vol.
48
,
1987
, pp. 749–753.
22.
Wong
,
A. K.
,
Sparrow
,
J. G.
, and
Dunn
,
S. A.
, “
On the Revised Thermoelastic Effect
,”
J. Phys. Chem. Solids
 0022-3697, Vol.
49
,
1988
, pp. 395–400.
23.
Pieczyska
,
E. A.
, and
Nowacki
,
W. K.
, “
Thermomechanical Aspects of Martensite and Reverse Transformations—TiNi Shape Memory Alloys Subjected to Tension
,”
12th International Conference on Experimental Mechanics
,
Bari, Italy, McGraw Hill
,
2004
, pp. 685–686.
24.
Emery
,
T.
,
Dulieu-Barton
,
J. M.
, and
Cunningham
,
P. R.
, “
Identification of Damage in Composite Structures Using Thermoelastic Stress Analysis
,”
6th International Conference on Damage Assessment of Structures
,
Gdansk, Poland
,
Key Engineering Materials
,
2005
, pp. 583–590.
25.
Dulieu-Barton
J. M.
,
Quinn
S.
,
Eyre
,
C.
, and
Cunningham
,
P. R.
, “
Development of a Temperature Calibration Device for Thermoelastic Stress Analysis
,”
Applied Mech., and Mat
, Vol.
1
, No.
2
,
2004
, pp. 197–204.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal