Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Titanium, Niobium, Zirconium, and Tantalum for Medical and Surgical Applications
By
LD Zardiackas, Ph.D
LD Zardiackas, Ph.D
1
Professor and Chair Department of Biomedical Materials Science
Search for other works by this author on:
HL Freese, PE
HL Freese, PE
2
Manager Business Development Biomedical
Search for other works by this author on:
MJ Kraay, MS, MD
MJ Kraay, MS, MD
3
Associate Professor of Orthopaedics
Search for other works by this author on:
ISBN-10:
0-8031-3497-5
ISBN:
978-0-8031-3497-3
No. of Pages:
269
Publisher:
ASTM International
Publication date:
2006

More demanding performance expectations for total joint arthroplasty are driving the development of alternative bearing materials. Oxidized zirconium was developed as an alternative to cobalt-chromium alloy for knee and hip femoral components in order to reduce wear of the polyethylene counterface and to address the needs of metal-sensitive patients. Oxidation in high temperature air transforms the metallic Zr-2.5Nb alloy surface into a stable, durable, low-friction oxide ceramic without creating the risk for brittle fracture associated with monolithic ceramic components. This presentation reviews aspects of this technology with a historical perspective, including standards for the zirconium alloy, non-medical applications for oxidized zirconium, and previous orthopaedic applications for zirconium. Manufacturing processes for oxidized zirconium components are described, beginning with refining of the zirconium from beach sand, to producing the alloy ingot and bar, to fabricating the component shape, and finally to oxidizing the surface and burnishing it to a smooth finish. Conditions are described for producing the oxide with excellent integrity, which is nominally 5 μm thick and predominantly monoclinic phase. The metal and oxide microstructures are characterized and related to the mechanical properties of the components and durability of the oxide. Laboratory hip and knee simulator tests are reviewed, which indicate that oxidized zirconium components reduce wear of the polyethylene counterface by 40–90 % depending on test conditions. As evidenced by promising early clinical experience, oxidized zirconium components have characteristics that provide an alternative to conventional cobalt-chromium components with an interchangeable surgical technique, while providing the potential for superior performance.

1.
Barrack
,
R. L.
,
Castro
, ,
F. P.
 Jr.
,
Szuszczewicz
,
E. S.
, and
Schmalzried
,
T. P.
, “
Analysis of Retrieved Uncemented Porous-Coated Acetabular Components in Patients with and without Pelvic Osteolysis
,”
Orthopedics
 0147-7447, Vol.
25
, No.
12
,
2002
, pp. 1373–1378.
2.
Levesque
,
M.
,
Livingston
,
B. J.
,
Jones
,
W. M.
, and
Specter
,
M.
, “
Scratches on Condyles in Normal Functioning Total Knee Arthroplasty
,”
Transactions of the Orthopaedic Research Society
, Vol.
21
,
1998
, p. 247.
3.
Fisher
,
J.
,
Firkins
,
P.
,
Reeves
,
E. A.
,
Hailey
,
J. L.
, and
Isaac
,
G. H.
, “
The Influence of Scratches to Metallic Counterfaces on the Wear of Ultra-High Molecular Weight Polyethylene
,”
Proceedings of the Institute of Mechanical Engineers
 0020-3483, Vol.
209-H
,
1995
, pp. 263–264.
4.
Dowson
,
D.
,
Taheri
,
S.
, and
Wallbridge
,
N. C.
, “
The Role of Counterface Imperfections in the Wear of Polyethylene
,”
Wear
 0043-1648, Vol.
119
,
1987
, pp. 277–293.
5.
Davidson
,
J. A.
, “
Characteristics of Metal and Ceramic Total Hip Bearing Surfaces and Their Effect on Long-Term Ultra High Molecular Weight Polyethylene Wear
,”
Clinical Orthopaedics and Related Research
 0009-921X, Vol.
294
,
1993
, pp. 361–378.
6.
Davidson
,
J. A.
,
Asgian
,
C. M.
,
Mishra
,
A. K.
, and
Kovacs
,
P.
, “
Zirconia (Zr02)-Coated Zirconium-2.5Nb Alloy for Prosthetic Knee Bearing Applications
,”
Bioceramics Volume 5
,
Kankokai
Kobunshi
,
Yamamuro
T.
,
Kokubo
T.
, and
Nakamura
T.
, Eds.,
Kyoto
,
1992
, pp. 389–401.
7.
Hunter
,
G.
,
Jones
,
W. M.
, and
Spector
,
M.
, “
Oxidized Zirconium
,”
Total Knee Arthroplasty
,
Springer-Verlag
,
Bellemans
J.
,
Ries
M. D.
, and
Victor
J.
, Eds., in press.
8.
Schemel
,
J. H.
,
ASTM Manual on Zirconium and Hafnium, STP 639
,
ASTM International
,
West Conshohocken, PA
,
1977
.
9.
Laing
,
P. G.
, “
Historical Perspective on Titanium Implants
,”
ASTM Symposium on Medical Applications of Titanium and Its Alloys
,
Phoenix
, 15–16 November 1994.
10.
Yau
,
T. L.
and
Webster
,
R. T.
, “
Corrosion of Zirconium and Hafnium
,”
Metals Handbook, Volume 13, Ninth Edition
,
American Society for Metals
,
Metals Park, OH
,
1987
, pp. 707–721.
11.
Cox
,
B.
, “
Oxidation of Zirconium and Its Alloys
,”
Advances in Corrosion Science and Technology
, Volume
5
,
Plenum Press
,
Fontana
M. G.
and
Staehle
R. M.
, Eds.,
New York
,
1976
, pp. 173–391.
12.
Haygarth
,
J. C.
and
Graham
,
R. A.
, “
Zirconium and Hafnium
,”
Review of Extraction, Processing, Properties & Applications of Reactive Metals
,
The Minerals, Metals & Materials Society
,
Mishra
B.
, Ed.,
Warrendale, PA
,
2001
, pp. 1–72.
13.
Haygarth
,
J. C.
and
Fenwick
,
L. J.
, “
Improved Wear Resistance of Zirconium by Enhanced Solid Oxide Films
,”
Thin Solid Films
 0040-6090, Vol.
118
,
1984
, pp. 351–362.
14.
Kemp
,
W. E.
, “
Nobleizing: Creating Tough, Wear Resistant Surfaces on Zirconium
,”
Outlook
, Vol.
11
, No.
2
,
1990
, pp. 4–8.
15.
Blumenthal
,
W. B.
, “
Zirconium-Behavior in Biological Systems
,”
Journal of Scientific and Industrial Research
, Vol.
35
, No.
7
,
1976
, pp. 485–490.
16.
Kovacs
,
P.
and
Davidson
,
J. A.
, “
Chemical and Electrochemical Aspects of the Biocompatibiltiy of Titanium and Its Alloys
,”
Medical Applications of Titanium and Its Alloys, STP 1272
,
Brown
S. A.
and
Lemons
J. E.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1996
, pp. 163–178.
17.
Davidson
,
J. A.
,
Mishra
,
A. K.
,
Kovacs
,
P.
, and
Poggie
,
R. A.
, “
New Surface-Hardened, Low-Modulus, Corrosion-Resistant Ti-13Nb-13Zr Alloy for Total Hip Arthroplasty
,”
Bio-Medical Materials and Engineering
 0959-2989, Vol.
4
, No.
3
,
1994
, pp. 231–243.
18.
Surgical Implants Made of Zirconium
,”
N. A. Dollezhal Research and Development Institute of Power Engineering
, Moscow, Russia,
04
08
2004
. URL: http://www.nikiet.ru/eng/structure/hightemp/implant.html.
19.
Implants
,” http://www.zahnweiss.at/e/implant.htm,
C. S. Weiss
, Vienna, Austria,
04
08
2004
.
20.
Erlank
,
A. J.
, et al
Handbook of Geochemistry, Volume II/4
,
Springer-Verlag
,
Wedepohl
K. H.
, Ed.,
Heidelberg, Germany
,
1978
, section 72-E.
21.
Hallab
,
N.
,
Merritt
,
K.
, and
Jacobs
,
J. J.
, “
Metal Sensitivity in Patients with Orthopaedic Implants
,”
The Journal of Bone and Joint Surgery
 0021-9355, Vol.
83-A
, No.
3
,
2001
, pp. 428–436.
22.
Vittetoe
,
D. A.
and
Rubash
,
H. E.
, “
Strategies for Reducing Ultra-High Molecular Weight Polyethylene Wear and Osteolysis in Total Knee Arthroplasty
,”
Seminars in Arthroplasty
, Vol.
13
, No.
4
,
2002
, pp. 344–349.
23.
Tsai
,
S.
,
Sprague
,
J.
,
Hunter
,
G.
,
Thomas
,
R.
, and
Salehi
,
A.
, “
Mechanical Testing and Finite Element Analysis of Oxidized Zirconium Femoral Components
,”
Transactions of the Society For Biomaterials
, Vol.
24
,
2001
, p. 163.
24.
Sprague
,
J.
,
Aldinger
,
P.
,
Tsai
,
S.
,
Hunter
,
G.
,
Thomas
,
R.
, and
Salehi
,
A.
, “
Mechanical Behavior of Zirconia, Alumina, and Oxidized Zirconium Modular Heads
,”
ISTA 2003 Volume 2
,
International Society for Technology in Arthroplasty
,
Brown
S.
,
Clarke
I. C.
, and
Gustafson
A.
, Eds.,
Birmingham, AL
,
2004
, pp. 31–36.
25.
Benezra
,
V.
,
Mangin
,
S.
,
Treska
,
M.
,
Spector
,
M.
,
Hunter
,
G.
, and
Hobbs
,
L. W.
, “
Microstmctural Investigation of the Oxide Scale on Zr-2.5Nb and Its Interface with the Alloy Substrate
,”
Biomedical Materials, Symposium Proceedings 550
,
Materials Research Society
,
Neenan
T.
,
Marcolongo
M.
, and
Valentini
R. F.
, Eds.,
Warrendale, PA
,
1999
, pp. 337–342.
26.
Long
,
M.
,
Riester
,
L.
, and
Hunter
,
G.
, “
Nano-Hardness Measurements of Oxidized Zr-2.5Nb and Various Orthopaedic Materials
,”
Transactions of the Society For Biomaterials
, Vol.
21
,
1998
, p. 528.
27.
Davidson
,
J. A.
,
Poggie
,
R. A.
, and
Mishra
,
A. K.
, “
Abrasive Wear of Ceramic, Metal, and UHMWPE Bearing Surfaces from Third-Body Bone, PMMA Bone Cement and Titanium Debris
,”
Bio-Medical Materials and Engineering
 0959-2989, Vol.
4
, No.
3
,
1994
, pp. 213–229.
28.
Hunter
,
G.
and
Long
,
M.
, “
Abrasive Wear of Oxidized Zr-2.5Nb, CoCrMo, and Ti-6A1-4V Against Bone Cement
,”
Sixth World Biomaterials Congress Transactions
,
Society For Biomaterials
,
Minneapolis
,
2000
, p. 835.
29.
Hunter
,
G.
, “
Adhesion Testing of Oxidized Zirconium
,”
Transactions of the Society For Biomaterials
, Vol.
24
,
2001
, p. 540.
30.
Hunter
,
G.
,
Pawar
,
V.
,
Salehi
,
A.
, and
Long
,
M.
, “
Abrasive Wear of Modified CoCr and Ti-6A1-4V Surfaces Against Bone Cement
,”
Medical Device Materials
,
ASM International
,
Shrivastava
S.
, Ed.,
Materials Park, OH
,
2004
, pp. 91–97.
31.
Mishra
,
A. K.
and
Davidson
,
J. A.
, “
Zirconia/Zirconium: A New, Abrasion Resistant Material for Orthopaedic Applications
,”
Materials Technology
, Vol.
8
, Nos.
1/2
,
1993
, pp. 16–21.
32.
Mazzucco
,
D.
and
Specter
,
M.
, “
Tribological Evaluation of Oxidized Zirconium Versus Cobalt-Chromium Alloy Against Polyethylene
,”
Transactions of the Orthopaedic Research Society
, Vol.
29
,
2004
, p. 1460.
33.
Salehi
,
A.
,
Aldinger
,
P.
,
Sprague
,
J.
,
Hunter
,
G.
,
Bateni
,
A.
,
Tavana
,
H.
, et al
Dynamic Contact Angle Measurements on Orthopaedic Ceramics and Metals
,”
Medical Device Materials
,
ASM International
,
Shrivastava
S.
, Ed.,
Materials Park, OH
,
2004
, pp. 98–102.
34.
Poggie
,
R. A.
,
Wert
,
J. J.
,
Mishra
,
A. K.
, and
Davidson
,
J. A.
, “
Friction and Wear Characterization of UHMWPE in Reciprocating Sliding Contact with Co-Cr, Ti-6A1-4V and Zirconia Implant Bearing Surfaces
,”
Wear and Friction of Elastomers, STP 1145
,
Denton
R.
and
Keshavan
M. K.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1992
, pp. 65–81.
35.
Patel
,
A. M.
and
Spector
,
M.
, “
Tribological Evaluation of Oxidized Zirconium Using an Articular Cartilage Counterface
,”
Biomaterials
 0142-9612, Vol.
18
, No.
5
,
1997
, pp. 441–447.
36.
Spector
,
M.
,
Ries
,
M. D.
,
Bourne
,
R. B.
,
Sauer
,
W. S.
,
Long
,
M.
, and
Hunter
,
G.
, “
Wear Performance of Ultra-High Molecular Weight Polyethylene on Oxidized Zirconium Total Knee Femoral Components
,”
The Journal of Bone and Joint Surgery
 0021-9355, Vol.
83-A
, Supplement 2,
2001
, pp. 80–86.
37.
White
,
S. E.
,
Whiteside
,
L. A.
,
McCarthy
,
D. S.
,
Anthony
,
M.
, and
Poggie
,
R. A.
, “
Simulated Knee Wear with Cobalt Chromium and Oxidized Zirconium Knee Femoral Components
,”
Clinical Orthopaedics and Related Research
 0009-921X, Vol.
309
,
1994
, pp. 176–184.
38.
Walker
,
P. S.
,
Blunn
,
G. W.
, and
Lilley
,
P. A.
, “
Wear Testing of Materials and Surfaces for Total Knee Replacement
,”
Journal of Biomedical Materials Research
 0021-9304, Vol.
33
, No.
3
,
1996
, pp. 159–175.
39.
Hermida
,
J. C.
,
Patil
,
S.
,
D'Lima
,
D. D.
,
Colwell
, ,
C. W.
 Jr.
, and
Ezzet
,
K. A.
, “
Polyethylene Wear Against Metal-Ceramic Composite Femoral Components
,”
American Academy of Orthopaedic Surgeons Proceedings
, Vol.
5
,
2004
, p. 449.
40.
Ries
,
M.
,
Salehi
,
A.
,
Widding
,
K.
, and
Hunter
,
G.
, “
Polyethylene Wear Performance of Oxidized Zirconium and Cobalt-Chromium Knee Components Under Abrasive Conditions
,”
The Journal of Bone and Joint Surgery
 0021-9355, Vol.
84-A
, Supplement 2,
2002
, pp. 129–135.
41.
DesJardins
,
J. D.
and
LaBerge
,
M.
, “
UHMWPE In-Vitro Wear Performance Under Roughened Oxidized Zirconium and CoCr Femoral Knee Components
,”
Transactions of the Society For Biomaterials
, Vol.
26
,
2003
, p. 364.
42.
Good
,
V.
,
Ries
,
M.
,
Barrack
,
R. L.
,
Widding
,
K.
,
Hunter
,
G.
, and
Heuer
,
D.
, “
Reduced Wear with Oxidized Zirconium Femoral Heads
,”
The Journal of Bone and Joint Surgery
 0021-9355, Vol.
85-A
, Supplement 4,
2003
, pp. 105–110.
43.
Clarke
,
I. C.
,
Green
,
D. D.
,
Williams
,
P. A.
, and
Good
,
V.
, “
Simulator Comparison of XLPE Wear with 36 mm CoCr and Oxidized Zirconium Balls in Smooth and Roughened Condition
,”
Transactions of the Seventh World Biomaterials Congress
,
Australian Society for Biomaterials
,
Victoria, Australia
,
2004
, p. 1138.
44.
Good
,
V.
,
Widding
,
K.
,
Heuer
,
D.
, and
Hunter
,
G.
, “
Reduced Wear Using the Ceramic Surface on Oxidized Zirconium Heads
,”
Bioceramics in Joint Arthroplasty
,
Steinkopff Verlag
,
Lazernnec
J. Y.
and
Dietrich
M.
, Eds.,
Darmstadt, Germany
,
2004
, pp. 93–98.
45.
Tsai
,
S.
,
Aldinger
,
P.
,
Hunter
,
G.
,
Thomberry
,
R. L.
, and
Salehi
,
A.
, “
Thermal Generation and Dissipation Behavior of Various Bearing Materials in a Hip Joint Simulator
,”
Transactions of the Seventh World Biomaterials Congress
,
Australian Society for Biomaterials
,
Victoria, Australia
,
2004
, p. 816.
46.
Heuer
,
D.
,
Good
,
V.
, and
Widding
,
K.
, “
Wear Performance of Damaged Oxidized Zr-2.5Nb Modular Femoral Heads
,”
Transactions of the Society For Biomaterials
, Vol.
26
,
2003
, p. 366.
47.
Laskin
,
R. S.
, “
An Oxidized Zr Ceramic Surfaced Femoral Component for Total Knee Arthroplasty
,”
Clinical Orthopaedics and Related Research
 0009-921X, Vol.
416
,
2003
, pp. 191–196.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal