Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Effects of Radiation on Materials: 21st International Symposium
By
ML Grossbeck
ML Grossbeck
1
University of Tennessee
,
Knoxville, Tennessee Symposium Chair and Editor
Search for other works by this author on:
TR Allen
TR Allen
2
University of Wisconsin
?
Madison, Wisconsin Symposium Co-Chair and Editor
Search for other works by this author on:
RG Lott
RG Lott
3
Westinghouse Electirc Company
?
Pittsburgh, Pennsylvania Symposium Co-Chair and Editor
Search for other works by this author on:
AS Kumar
AS Kumar
4
University of Missouri Rolla
?
Rolla, Missouri Symposium Co-Chair and Editor
Search for other works by this author on:
ISBN-10:
0-8031-3477-0
ISBN:
978-0-8031-3477-5
No. of Pages:
758
Publisher:
ASTM International
Publication date:
2004

The DBTT shift in irradiated VVER pressure vessel steels is represented by standard guidelines with a power law dependence on fast neutron fluence multiplied by a material constant. However, from recent data on surveillance specimens for several units of VVER-440, an irradiation embrittlement enhancement has been observed at neutron fluences above (2–3)×1020 n/cm2 (E>0.5 MeV) with a significant deviation from the standard guideline. This suggests an additional mechanism of irradiation embrittlement at high fluences.

In the present work it was supposed that such a mechanism could be intergranular embrittlement caused by grain boundary phosphorus segregation. A threshold dose was used that accounts for intergranular embrittlement, that occurs after sufficient phosphorus segregation, when the critical stress for intergranular fracture falls below that for cleavage fracture. The modeling of phosphorus accumulation on grain boundaries is performed taking into account the radiation-enhanced phosphorus diffusion by both vacancy and interstitial mechanisms, the radiation-induced segregation in the matrix near grain boundaries, and the Gibbsian adsorption on grain boundaries. Predictions of such a composite model are in agreement with surveillance data for VVER-440.

1.
Nikolaeva
,
A. E.
,
Nikolaev
,
Yu. A.
, and
Kevorkyan
,
Yu. R.
, “
An Experimental-Statistical Analysis of Irradiation Embrittlement of Vessel Materials in VVER-440
,”
Atomnaya energiya
,
2000
, Vol.
90
, No.
4
, pp. 260–267.
2.
Shtrombakh
,
Ya. I.
, “
An Experimental Substantiation of the Irradiation Life Time of Vessel Materials in VVER-440
,” Doctor of Science Thesis,
Russian Scientific Center “Kurchatov Institute”
, Moscow,
1998
, p. 240.
3.
Levit
,
V. I.
,
Korolev
,
Yu. N.
,
Tipping
,
Ph.
, and
Lessa
,
R.N.T.
, “
Empirical Correlation of Observed Three Stages of Fast Neutron Irradiation Hardening and Embrittlement in WWER-440 Pressure Vessel Materials
,”
Effects of Radiation on Materials: 18th International Symposium
, ASTM STP 1325,
Nanstad
R. K.
,
Hamilton
M. L.
,
Garner
F. A.
, and
Kumar
A. S.
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1999
, pp. 541–555.
4.
Gurovich
,
B. A.
,
Kuleshova
,
E. A.
,
Nikolaev
,
Yu. A.
, and
Shtrombakh
,
Ya. I.
, “
Assessment of Relative Contributions from Different Mechanisms to Radiation Embrittlement of Reactor Pressure Vessel Steels
,”
Journal of Nuclear Materials
,
1997
, Vol.
246
, pp. 91–120.
5.
English
,
C. A.
,
Ortner
,
S. R.
,
Gage
,
G.
,
Server
,
W. L.
, and
Rosinski
,
S. T.
, “
Review of Phosphorus Segregation and Intergranular Embrittlement in Reactor Pressure Vessel Steels
,”
Effects of Radiation on Materials: 20th International Symposium
, ASTM STP 1405,
Rosinski
S. T.
,
Grossbeck
M. L.
,
Allen
T. R.
and
Kumar
A. S.
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
,
2001
, pp. 151–173
6.
Nikolaev
,
Yu. A.
,
Nikolaeva
,
A. V.
,
Zabusov
,
O. O.
, et al
, “
Radiation and Thermally Induced Phosphorus Adsorption on Grain Boundaries in Low-Alloyed Steels
,”
Fizika Metallov i Metallovedenie
,
1996
, Vol.
81
, pp. 120–128.
7.
Bolton
,
C. J.
,
Buswell
,
J. T.
,
Jones
,
R. B.
,
Moskovic
,
R.
and
Priest
,
R. H.
, “
The Modelling of Irradiation Embrittlement in Submerged-Arc Welds
,”
Effects of Radiation on Materials: 17th International Symposium
, ASTM STP 1270,
Gelles
D. S.
,
Nanstad
R. K.
,
Kumar
A. S.
, and
Little
E. A.
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1996
, pp. 103–118.
8.
Eason
,
E.D.
,
Wright
,
J.E.
, and
Odette
,
G.R.
, “
Improved Embrittlement Correlations for Reactor Pressure Vessel Steels
”, NUREG/CR-6551 (
Washington, D.C.
:
U.S.Government Printing Office, U.S. Nuclear Regulatory Commission
,
1998
).
9.
U.S. Regulatory Commission
, “
Radiation Embrittlement Damage to Reactor Vessel Materials
,” Regulatory Guide 1.99, Rev. 2,
05
1988
.
10.
Pichon
,
C.
,
Brillaud
,
C.
,
Deydier
,
D.
,
Alberman
,
A.
, and
Soulat
,
P.
, “
Neutron Spectrum Effect and Damage Analysis on Pressure Vessel Steel Irradiation Behavior
,”
Effects of Radiation on Materials: 19th International Symposium
, ASTM STP 1366,
Hamilton
M. L.
,
Kumar
A. S.
,
Rosinski
S. T.
and
Grossbeck
M. L.
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
,
2000
, pp. 87–97.
11.
Standards for Calculation of Strength in Inventory and Pipelines of Nuclear Facilities
, PNAE G-7-002-86,
Moscow
,
Energoatomizdat
,
1989
.
12.
McLean
,
D.
,
Grain Boundaries in Metals
,
Clarendon
,
Oxford
,
1957
.
13.
Druce
,
S. G.
,
English
,
C. A.
,
Foreman
,
A. J. E.
, et al
, “
The Modelling of Irradiation-Enhanced Phosphorus Segregation in Neutron Irradiated Reactor Pressure Vessel Submerged-arc Welds
,”
Effects of Radiation on Materials: 17thInternational Symposium
, ASTM STP 1270,
Gelles
D. S.
,
Nanstad
R. K.
,
Kumar
A. S.
, and
Little
E. A.
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1996
, pp. 119–137.
14.
Guttman
,
M.
, “
Equilibrium Segregation in a Ternary Solution: a Model for Temper Embrittlement
,”
Surface Science
 0039-6028,
1975
, Vol.
53
, pp. 213–227.
15.
Pechenkin
,
V. A.
, “
On Segregation on Grain Boundaries in Multicomponent Alloys Under Irradiation
,” Preprint of IPPE-2778, Obninsk, Russia,
1999
.
16.
Pechenkin
,
V. A.
,
Stepanov
,
I. A.
, and
Konobeev
,
Yu. V.
, “
Modeling of Phosphorus Accumulation on Grain Boundaries in Iron Alloys Under Irradiation
,”
Effects of Radiation on Materials: 20th Int. Symp.
, ASTM STP 1405,
Rosinski
S. T.
,
Grossbeck
M. L.
,
Allen
T. R.
and
Kumar
A. S.
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
,
2001
, pp. 174–187.
17.
Lidiard
,
A. B.
, “
The Migration of Phosphorus in Ferritic Iron Alloys Under Irradiation
,”
Philosophical Magazine A
 0031-8086,
1999
, Vol.
79
, pp. 1493–1506.
18.
Kevorkyan
,
Yu. R.
,
Nikolaev
,
Yu. A.
, and
Nikolaeva
,
A. V.
, “
Effect of Cascade Microvoids on Point Defect Diffusion Fluxes in Reactor Vessel Materials
,”
Atomnaya Energiya
,
1999
, Vol.
86
, No.
5
, pp. 370–383.
19.
Takaki
,
S.
,
Fuss
,
J.
,
Kugler
,
H.
,
Dedek
,
U.
, and
Schulz
,
H.
,
Radiation Effects
,
1983
,Vol.
79
, p. 87.
20.
Utevskii
,
L. M.
,
Glikman
,
E. E.
, and
Kark
,
G. S.
, “
Temper Embrittlement of Steels and Iron Based Alloys
,”
Metallurgy
,
Moscow
,
1987
.
21.
Stepanov
,
I. A.
,
Pechenkin
,
V. A.
, and
Konobeev
,
Yu. V.
, “
The Modeling of Radiation-Induced Phosphorus Segregation at Point Defect Sinks in Dilute Fe-P Alloys
,” This Symposium.
22.
Fabry
,
A.
,
Van de Velde
,
J.
,
Puzzolante
,
J.L.
,
Van Ransbeeck
,
T.
,
Verstrepen
,
A.
,
Biemiller
,
E.C.
,
Carter
,
R.G.
, and
Petrova
,
T.
, “
Research to Understand the Embrittlement Behavior of Yankee/BR3 Surveillance Plate and Other Outlier RPV Steels
,”
Effects of Radiation on Materials: 17th International Symposium
, ASTM STP 1270,
Gelles
D. S.
,
Nanstad
R. K.
,
Kumar
A. S.
, and
Little
E. A.
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1996
, pp. 138–187.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal