Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Stainless Steels for Medical and Surgical Applications
By
GL Winters
GL Winters
1
Cedar Creek, Texas,
USA
Search for other works by this author on:
MJ Nutt
MJ Nutt
2
Spinal Innovations
,
Bartlett, Tennessee,
USA
Search for other works by this author on:
ISBN-10:
0-8031-3459-2
ISBN:
978-0-8031-3459-1
No. of Pages:
286
Publisher:
ASTM International
Publication date:
2003

Today's implant quality stainless steels contain up to 16 wt% nickel although nickel ions are the most widespread skin contact allergens. Previously sensitized persons may develop allergic reactions when nickel is released from stainless steel medical implants. New low-nickel stainless steels combine the benefits of excellent mechanical properties with virtual absence of nickel.

Miniature bone plates and corresponding 2.0 mm screws for the fixation of small bone fragments were produced of a low-nickel stainless steel. The implants were tested in a static reverse-bending setup and under dynamic conditions, and compared to commercially pure (CP) titanium and standard 316L implant steel counterparts. The low-nickel plate could withstand over 200 cycles of bending, whereas the titanium plate broke at 26 cycles. This confirms the higher tolerance of the low-nickel plate to multiple contouring during surgery.

Nevertheless, high cycle fatigue tests under physiologic conditions showed that the low-nickel steel plates exhibit lower resistance to cyclic loads than titanium and 316L plates. SEM investigations of the fatigue fractures confirmed that the cracks preferentially propagate along grain boundaries leading to intergranular fracture of the low-nickel steel. It is suggested that the intergranular crack initiation facilitates the early failure under high cycle fatigue conditions, whereas plastic bending properties are not affected. The tendency to intergranular crack initiation in the low-nickel steel could stem from surface deformation (work hardening) introduced during machining and related embrittlement in the surface zone.

1.
Speidel
,
M. O.
, and
Uggowitzer
,
P. J.
, “
Biocompatible Nickel-Free Stainless Steels to Avoid Nickel Allergy
,”
Materials in Medicine, Proceedings of Materials Day 1998
,
ETH Zürich, Department of Materials
, pp. 191–208.
2.
Hierholzer
,
S.
and
Hierholzer
,
G.
, “
Internal Fixation and Metal Allergy — Clinical Investigations, Immunology and Histology of the Implant Tissue Interface
,”
Thieme Medical Publishers
,
New York
,
1992
.
3.
Speidel
,
M. O.
, “
Stickstofflegierte Stähle — eine Übersicht
,”
Ergebnisse der Werkstoff-Forschung
Band
4
,
Thubal-Kain
,
Zürich
,
1991
, pp. 1–17.
4.
Uggowitzer
,
P. J.
,
Magdowski
,
R.
, and
Speidel
,
M. O.
, “
Nickel Free High Nitrogen Austenitic Steels
,”
ISIJ International
, The Iron and Steel Institute of Japan, Vol.
36
, No.
7
,
1996
, pp. 901–908.
5.
Stein
,
G.
and
Hucklenbroich
,
I.
, “
Biokompatible stickstofflegierte Austenite für Anwendungen am und im menschlichen Körper
,”
Werkstoffwoche '98, Band IV, Symposium 4, Werkstoffe für die Medizintechnik
,
Planck
H.
and
Stallforth
H.
, Eds,
Wiley-VCH
,
Weinheim
,
1999
, pp. 3–9.
6.
Menzel
,
J.
,
Kirschner
,
W.
, and
Stein
,
G.
, “
High Nitrogen Containing Ni-Free Austenitic Steels for Medical Applications
,”
ISIJ International
, The Iron and Steel Institute of Japan, Vol.
36
, No.
7
,
1996
, pp. 893–900.
7.
Fink
,
U.
,
Weik
,
T.
, and
Gümpel
,
P.
, “
Nickel-Free Austenitic Steels as a Future Implant Material
,”
13th Europ. Conf. on Biomaterials
,
Göteborg, Sweden
, Sept. 4–7, 1997, p. 140.
8.
Cigada
,
A.
,
Rondelli
,
G.
,
Vicentini
,
B.
,
Brunella
,
F.
, and
Dallaspezia
,
G.
, “
Corrosion Behaviour of High Nitrogen Stainless Steels for Biomedical Applications
,”
Compatability of Biomedical Implants, San Francisco, California, USA, 23–25 May
,
1994
,pp.185–195.
9.
Brown
,
R. S.
and
Gebeau
,
R. C.
, “
Strength and Corrosion Resistance of BioDur 108 Alloy
,”
Proceedings of the Sixth World Biomaterials Congress
,
Kamuela, Hawaii
, May 15–20, 2000, p. 828.
10.
Disegi
,
J. A.
,
Zardiackas
,
L. D.
, and
Mitchell
,
D. W.
, “
Anodic Polarization Evaluation of Nickel-Free Implant Quality Stainless Steel
,”
Proceedings of the Sixth World Biomaterials Congress
,
Kamuela, Hawaii
, May 15–20, 2000, p. 816.
11.
Thomann
,
U. I.
and
Uggowitzer
,
P. J.
, “
Wear-Corrosion Behavior of Biocompatible Austenitic Stainless Steels
,”
Wear
 0043-1648, Vol.
239
,
2000
, pp. 48–58.
12.
Carpenter Technology Corporation Alloy Data, BioDur 108 Alloy,
Carpenter Technology corp.
, Reading, PA,
1999
.
13.
Internal Report on Cytotoxicity of Low-Nickel Steels
,
Robert Mathys Foundation
, Bettlach, Switzerland,
1998
.
14.
Hochörtler
,
G.
,
Bernauer
,
J.
, and
Kriszt
,
K.
, “
Corrosion Behaviour and Nickel Release of Alloys with Various Nickel Contents
,”
Materials for Medical Engineering, Proceedings of Euromat 99
, Vol.
2
,
Stallforth
H.
and
Revell
P.
, Eds.,
Wiley-VCH
,
Weinheim
,
2000
, pp. 204–209.
15.
Kraft
,
C. N.
,
Burian
,
B.
,
Perlick
,
L.
,
Wimmer
,
M. A.
,
Wallny
,
T.
,
Schmitt
,
O.
, and
Diedrich
,
O.
, “
Impact of a Nickel-Reduced Stainless Steel Implant on Striated Muscle Microcirculation, A Comparative In Vivo Study
,”
Journal of Biomedical Materials Research
, Vol.
57
,
2001
, pp. 404–412.
16.
Uggowitzer
,
P. J.
,
Speidel
,
M. O.
, and
Wohlfromm
,
H.
, “
PANACEA Provides the Answer to Ni Allergy
,”
MPR (Metal Powder Report)
,
09
1998
, pp. 48–52.
17.
Eschbach
,
L.
,
Marti
,
A.
, and
Gasser
,
B.
, “
Fretting Corrosion Testing of Internal Fixation Plates and Screws
,”
Materials for Medical Engineering, Proceedings of Euromat 99
, Vol.
2
,
Stallforth
H.
and
Revell
P.
, Eds.,
Wiley-VCH
,
Weinheim
,
2000
, pp. 193–198.
18.
Kramer
,
K.-H.
, “
Implants for Surgery — A Survey on Metallic Materials
,”
Materials for Medical Engineering, Proceedings of Euromat 99
, Vol.
2
,
Stallforth
H.
and
Revell
P.
, Eds.,
Wiley-VCH
,
Weinheim
,
2000
, pp. 9–29.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal