Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Composite Materials: Testing and Design, Fourteenth Volume
By
CE Bakis
CE Bakis
1
The Pennsylvania State University
?
University Park, PA 16802 Symposium Chairman and Editor
Search for other works by this author on:
ISBN-10:
0-8031-3465-7
ISBN:
978-0-8031-3465-2
No. of Pages:
402
Publisher:
ASTM International
Publication date:
2003

A research program is underway to experimentally characterize the strain rate dependent deformation and failure response of polymer matrix composites subject to high strain rate impact loads and to develop strain rate dependent deformation and failure models for the analysis of these types of materials. State variable constitutive equations based on a viscoplasticity approach have been developed to model the deformation of the polymer matrix. The constitutive equations are then combined with a mechanics of materials based micromechanics model which utilizes fiber substructuring to predict the effective mechanical and thermal response of the composite. Tensile stress-strain curves for a representative composite are obtained experimentally for strain rates ranging from quasi-static to several hundred per second. The developed numerical procedure is also used to compute the deformation response. The predictions compare favorably to the experimentally obtained values both qualitatively and quantitatively. Effective elastic and thermal constants are predicted for another composite, and compared to finite element results.

1.
Anonymous
,
LS-DYNA Keyword User's Manual, Version 950
,
Livermore Software Technology Corporation
,
Livermore, CA
,
1997
.
2.
Daniel
,
I. M.
,
Hamilton
,
W. G.
, and
LaBedz
,
R. H.
, “
Strain Rate Characterization of Unidirectional Graphite/Epoxy Composite
,”
Composite Materials: Testing and Design (Sixth Conference)
ASTM STP 787,
Daniel
I. M.
, Ed.,
ASTM International
,
West Conshohocken, PA
,
1982
, pp. 393–413.
3.
Staab
,
G. H.
and
Gilat
,
A.
, “
High Strain Rate Response of Angle-Ply Glass/Epoxy Laminates
,”
Journal of Composite Materials
 0021-9983, Vol.
29
,
1995
, pp. 1308–1320.
4.
Sun
,
C. T.
and
Chen
,
J. L.
, “
A Simple Flow Rule for Characterizing Nonlinear Behavior of Fiber Composites
,”
Journal of Composite Materials
 0021-9983, Vol.
23
,
1989
, pp. 1009–1020.
5.
Weeks
,
C. A.
and
Sun
,
C. T.
, “
Modeling Non-Linear Rate-Dependent Behavior in Fiber-Reinforced Composites
,”
Composites Science and Technology
 0266-3538, Vol.
58
,
1998
, pp. 603–611.
6.
Thiruppukuzhi
,
S. V.
and
Sun
,
C. T.
, “
Testing and modeling high strain rate behavior of polymeric composites
,”
Composites Part B
 1359-8368, Vol.
29B
,
1998
, pp. 535–546.
7.
Yoon
,
K. J.
and
Sun
,
C. T.
, “
Characterization of Elastic-Viscoplastic Properties of an AS4/PEEK Thermoplastic Composite
,”
Journal of Composite Materials
 0021-9983, Vol.
25
,
1991
, pp. 1277–1296.
8.
Bodner
,
S. R.
,
Unified Plasticity for Engineering Applications
,
Kluwer Academic/Plenum Publishers
,
New York
,
2002
,
9.
Sun
,
C. T.
and
Chen
,
J. L.
, “
A Micromechanical Model for Plastic Behavior of Fibrous Composites
,”
Composites Science and Technology
 0266-3538, Vol.
40
,
1991
, pp. 115–129.
10.
Zhang
,
C.
and
Moore
,
I. D.
, “
Nonlinear Mechanical Response of High Density Polyethylene. Part II: Uniaxial Constitutive Model
,”
Polymer Engineering & Science
 0032-3888, Vol.
37
,
1997
, pp. 414–420.
11.
Bordonaro
,
C. M.
, “
Rate Dependent Mechanical Behavior of High Strength Plastics: Experiment and Modeling
,” PhD Dissertation,
Rensselaer Polytechnic Institute
, Troy, New York,
1995
.
12.
Krempl
,
E.
and
Ho
,
K.
, “
An Overstress Model for Solid Polymer Deformation Behavior Applied to Nylon 66
,”
Time Dependent and Nonlinear Effects in Polymers and Composites
, ASTM STP 1357,
Schapery
R. A.
and
Sun
C. T.
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
,
2000
, pp. 118–137.
13.
Goldberg
,
R. K.
, “
Strain Rate Dependent Deformation and Strength Modeling of a Polymer Matrix Composite Utilizing a Micromechanics Approach
,” NASA TM-1999-209768,
National Aeronautics and Space Administration
,
Washington, D.C.
,
12
1999
.
14.
Arnold
,
S. M.
,
Bednarcyk
,
B. A.
,
Wilt
,
T. E.
, and
Trowbridge
,
D.
, “
Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) User Guide: Version 3.0
,” NASA TM-1999-209070,
National Aeronautics and Space Administration
,
Washington, D.C.
,
05
1999
.
15.
Stouffer
,
D. C.
and
Dame
,
L. T.
,
Inelastic Deformation of Metals: Models, Mechanical Properties and Metallurgy
,
John Wiley and Sons
,
New York
,
1996
.
16.
Wineman
,
A. S.
and
Rajagopal
,
K. R.
,
Mechanical Response of Polymers
,
Cambridge University Press
,
New York
,
2000
.
17.
Ward
,
I. M.
,
Mechanical Properties of Solid Polymers
,
John Wiley and Sons
,
New York
,
1983
.
18.
Aboudi
,
J.
,
Mechanics of Composite Materials: A Unified Micromechanical Approach
,
Elsevier
,
New York
,
1991
.
19.
Whitney
,
J. M.
, “
A Laminate Analogy for Micromechanics
,”
Proceedings of the American Society for Composites Eighth Technical Conference
,
Newaz
G.
, Ed.,
Technomic Publishing Company, Inc.
,
Lancaster, PA
,
1993
, pp. 785–794.
20.
Greszczuk
,
L. B.
, “
Interfiber Stresses in Filamentary Composites
,”
AIAA Journal
 0001-1452, Vol.
9
,
1971
, pp. 1274–1280.
21.
Mital
,
S. K.
,
Murthy
,
P. L. N.
, and
Chamis
,
C. C.
, “
Micromechanics for Ceramic Matrix Composites Via Fiber Substructuring
,”
Journal of Composite Materials
 0021-9983, Vol.
29
,
1995
, pp. 614–633.
22.
Goldberg
,
R. K.
, “
Implementation of Fiber Substructuring Into Strain Rate Dependent Micromechanics Analysis of Polymer Matrix Composites
,” NASA/TM-2001-210822,
National Aeronautics and Space Administration
,
Washington, D.C.
,
04
2001
.
23.
Gates
,
T. S.
,
Chen
,
J.-L.
, and
Sun
,
C. T.
, “
Micromechanical Characterization of Nonlinear Behavior of Advanced Polymer Matrix Composites
,”
Composite Materials: Testing and Design (Twelfth Volume)
ASTM STP 1274,
Deo
R.B.
and
Saff
C.R.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1996
, pp. 295–319.
24.
Murthy
,
P. L. N.
,
Ginty
,
C. A.
, and
Sanfeliz
,
J. G.
, “
Second Generation Integrated Composite Analyzer (ICAN) Computer Code
,” NASA TP-3290,
National Aeronautics and Space Administration
,
Washington, D.C.
,
01
1993
.
25.
Hyer
,
M. W.
,
Stress Analysis of Fiber Reinforced Composite Materials
,
McGraw-Hill
,
New York
,
1998
.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal