Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Spinal Implants: Are We Evaluating Them Appropriately?
By
MN Melkerson, M.S.
MN Melkerson, M.S.
1
Symposium chairman and co-editor
;
Food Drug Administration Center for Devices and Radiological Health Office of Device Evaluation
?
9200 Corporate Boulevard Rockville, MD 20850
Search for other works by this author on:
JS Kirkpatrick, M.D.
JS Kirkpatrick, M.D.
2
Symposium co-chairman and co-editor
;
University of Alabama, Birmingham and Birmingham Veterans Administration Medical Center
?
940 Faculty Office Tower 510 20th Street South Birmingham, Alabama 35294
Search for other works by this author on:
S Griffith, Ph.D.
S Griffith, Ph.D.
3
Symposium co-chairman and co-editor
;
Centerpulse Spine-Tech Division
?
7375 Bush Lake Road Minneapolis, MN 55439
Search for other works by this author on:
ISBN-10:
0-8031-3463-0
ISBN:
978-0-8031-3463-8
No. of Pages:
246
Publisher:
ASTM International
Publication date:
2003

Time-dependent behavior of functional spinal units, especially the anterior column, may interact with experimental methods when measuring their mechanical properties. Since they are tested using different load cycles, the comparison of results is difficult. The goal of this study was to determine the response of anterior column spinal units (body-disc-body units) to load cycles varying in waveform and cycle duration using an experimentally based mathematical model.

Specimen specific transfer function models were formulated for seven ovine lumbar anterior column units by fitting high order exponential functions to axial stress-relaxation measurements. Using axial load cycles with different waveforms and cycle durations, nine simulations in the time domain with each transfer function model were performed. For each simulation, the neutral zone, peak to peak, and hysteresis were evaluated.

The neutral zone and hysteresis were significantly dependent on the waveform of the load cycle. The differences of peak to peak for sinusoidal and triangular waveforms were low. All these characteristics were significantly dependent on the cycle duration. For example, comparison of 1 s to 20 s cycle durations exhibited neutral zone and hysteresis differences of 61–69% and 100%, respectively. Consequently, loading protocols should be chosen carefully and should be clearly reported.

1.
Adams
,
M. A.
and
Dolan
,
P.
, “
A Technique for Quantifying the Bending Moment Acting on the Lumbar Spine in vivo
,”
Journal of Biomechanics
, Vol.
24
, No.
2
,
1991
, pp. 117–125.
2.
Wilke
,
H.-J.
,
Claes
,
L.
,
Schmitt
,
H.
and
Wolf
,
S.
, “
A Universal Spine Tester for in vitro Experiments with Muscle Force Simulation
,”
European Spine Journal
, Vol.
3
,
1994
, pp. 91–97.
3.
Crawford
,
N. R.
,
Brantley
,
A. G. U.
,
Dickman
,
C. A.
and
Koeneman
,
E. J.
, “
An Apparatus for Applying Pure Nonconstraining Moments to Spine Segments In Vitro
,”
Spine
, Vol.
20
, No.
19
,
1995
, pp. 2097–2100.
4.
Linke
,
B.
,
Sellenschloh
,
K.
,
Huber
,
G.
,
Schneider
,
E.
,
Weltin
,
U.
, “
A New Method of Pre-clinical Spine Implant Testing in Six Degrees of Freedom“Based on the Hexapod Principle
,”
Journal of Biomechanics
, Vol.
31
, (
S1
),
1998
, p. 41
5.
Schreiber
,
U.
,
Bence
,
T.
,
Bader
,
R.
,
Beisse
,
R.
,
Grupp
,
T.
,
Mittelmeier
,
W.
and
Steinhauser
,
E.
, “
Validation of a Newly Developed Experimental Setup for Segmental Spinal Testing
,”
Journal of Biomechanics
, Vol.
34 (S1)
, No.
19
,
2001
, pp. 65–66.
6.
Nachemson
,
A.
, “
The Load on Lumbar Disks in Different Positions of the Body
,”
Clinical Orthopaedics
, Vol.
45
,
1966
, pp. 107–122.
7.
Ledet
,
E.
,
Gatto
,
C.
,
McVoy
,
J.
,
Brunski
,
J.
,
Donzelli
,
P.
,
Sachs
,
B.
, “
Real-Time In Vivo Loading in the Baboon Lumbar Spine Using an Interbody Implant Load Cell
,”
Proceeding of the 46th Annual Meeting
,
Orthopaedic Research Society
,
2000
, p. 384.
8.
Wilke
,
H.-J.
,
Neef
,
P.
,
Hinz
,
B.
,
Seidel
,
H.
,
Claes
,
L.
, “
Intradiscal Pressure Together with Anthropometric Data—A Data Set for the Validation of Models
,”
Clinical Biomechanics
, Vol.
16
(
S1
),
2001
, pp. S111–S126.
9.
Burns
,
M. L.
and
Kaleps
,
I.
, “
Analysis of Load-Deflection Behavior of Intervertebral Disc under Axial Compression Using Exact Parametric Solutions of Kelvin-Solid Models
,”
Journal of Biomechanics
, Vol.
13
,
1980
, pp. 959–996.
10.
Fliege
,
N.
, “
Systemtheorie
,“
Teubner
,
Stuttgart
,
1991
.
11.
Coe
,
J. D.
,
Warden
,
K. E.
,
Sutterlin
,
C. E.
,
McAfee
,
P. C.
, “
Biomechanical Evaluation of Cervical Spinal Stabilization Methods in a Human Cadaveric Model
,”
Spine
, Vol.
14
, No.
10
,
1989
, pp. 1122–1131.
12.
Shea
,
M.
,
Edwards
,
W. T.
,
Colothiaux
,
P. L.
,
Crowell
,
R. R.
,
Nachemson
,
A. L.
,
White
,
A. A.
 III
and
Hayes
,
W. C.
, “
Three-dimensional Load Displacement Properties of Posterior Lumbar Fixation
,”
Journal of Orthopaedic Trauma
, Vol.
5
, No.
4
,
1991
, pp. 420–427.
13.
Zdeblick
,
T. A.
,
Warden
,
K. E.
,
Zou
,
D.
,
McAfee
,
P. C.
, and
Abitbol
,
J. J.
, “
Anterior Spinal Fixators — A Biomechanical In Vitro Study
,”
Spine
, Vol.,
18
, No.
4
,
1993
, pp. 513–517.
14.
Richman
J. D.
,
Daniel
,
T. E.
,
Anderson
,
D. D.
,
Miller
,
P. L.
and
Douglas
,
R. A.
, “
Biomechanical Evaluation of Cervical Spine Stabilization Methods Using a Porcine Model
,”
Spine
, Vol.
20
, No.
20
,
1995
, pp. 2192–2197.
15.
Wilke
,
H.-J.
,
Kettler
,
A.
,
Claes
,
L. E.
, “
Are Sheep Spines a Valid Biomechanical Model for Human Spines?
,”
Spine
, Vol.,
22
, No.
20
,
1997
, pp. 2365–2374.
16.
Clausen
,
J. D.
,
Ryken
,
T. C.
,
Traynelis
,
V. C.
,
Sawin
,
P. D.
,
Dexter
,
F.
and
Goel
,
V. K.
, “
Biomechanical Evaluation of Caspar and Cervical Spine Locking Plate System in a Cadaveric Model
,”
Journal of Neurosurgery
, Vol.
84
,
1996
, pp. 1039–1045.
17.
Rathonyi
,
G. C.
,
Oxland
,
T. R.
,
Gerich
,
U.
,
Grassmann
,
S.
,
Nolte
,
L.-P.
, “
The Role of Supplemental Translaminar Screws in Anterior Lumbar Interbody Fixation: A Biomechanical Study
,”
European Spine Journal
, Vol.
7
,
1998
, pp. 400–407.
18.
Cripton
,
P. A.
,
Bruehlmann
,
S. B.
,
Orr
,
T. E.
,
Oxland
,
T. R.
and
Nolte
,
L.-P.
, “
In vitro Axial Preload Application during Spine Flexibility Testing: Towards Reduced Apparatus-Related Artifacts
,”
Journal of Biomechanics
, Vol.
33
,
2000
, pp. 1559–1568.
19.
Huber
,
G.
,
Ito
,
K.
,
Linke
,
B.
,
Schneider
,
E.
,
Morlock
,
M.
, “
The Influence of Intervertebral Disc Time-dependent Properties on in-vitro Testing
,”
Journal of Biomechanics
, Vol.
34
(
S1
),
2001
, pp. S13–S14.
20.
Wilke
,
H.-J.
,
Wenger
,
K.
and
Claes
,
L.
, “
Testing Criteria for Spinal Implants-Recommendations for the Standarization of in vitro Stability Testing of Spinal Implants
,”
European Spine Journal
, Vol.
7
, No.
2
,
1998
, pp. 148–154.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal