Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Fatigue & Fracture Mechanics: 33rd Volume
By
WG Reuter
WG Reuter
1
INEEL
?
Idaho Falls, Idaho
Search for other works by this author on:
RS Piascik
RS Piascik
2
NASA Langley Research Center
?
Hampton, Virginia
Search for other works by this author on:
ISBN-10:
0-8031-2899-1
ISBN:
978-0-8031-2899-6
No. of Pages:
786
Publisher:
ASTM International
Publication date:
2003
Given the nature of fracture in the lower transition region where final fracture by cleavage is preceded by some amount of plastic deformation, it is appropriate to use a combined strength-strain criterion to describe the conditions at fracture. A dislocation- based model for predicting fracture toughness of steels in the transition region has been developed where the primary feature describing the temperature dependence of fracture toughness is a plastic work term of the following form:
where γeff is the effective plastic work to fracture, p is the effective plastic strain increment, σm/¯σ is the triaxiality ratio and r0 is the length scale of the critical fracture event typically taken as carbide cracking*(and thus D0 = r0 is the critical carbide radius). The σZA term represents the flow stress from the Zerilli-Armstrong constitutive equation for bcc metals. This term introduces a temperature dependency based on dislocation mechanics considerations. Inserting the first equation into the Griffith-Orowan equation for fracture stress leads to the elimination of the carbide radius from the equation,
and thus the need for defining a characteristic distance.

In this paper we describe the details of this model used to predict fracture toughness behavior transition with temperature for ferritic steels. We then combine this model with a discussion of the uniformity of steel tensile properties to develop a method for predicting fracture toughness transition temperature shift due to irradiation from hardness tests.

1.
Code of Federal Regulation 10CFR50.61, “
Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events
.”
2.
Yoon
,
K. K.
, “
Alternative Method of RTNDT Determination for Some Reactor Vessel Weld Metals Validated by Fracture Toughness Data
,”
J. of Pressure Vessel Technology
 0094-9930, Vol.
117
, pp. 378–382,
11
1995
.
3.
Server
W.
,
Griesbach
T.
Lott
R.G.
, and
Kim
C.C.
, “
Determination of Margins and Heat Adjustments for Master Curve Applications in RPV Integrity Analysis
,”
Proc. of the 2000 ASME Pressure Vessel and Piping Conference
,
ASME
,
07
2000
.
4.
Lott
,
R.
,
Kirk
,
M.
,
Kim
,
C.
,
Server
,
W.
,
Tomes
,
C.
, and
Williams
,
J.
Application of Master Curve Technology to Estimation of End of License Adjusted Reference Temperature For a Nuclear Power Plant
,” Proc. of the 1999 ASME Pressure Vessel and Piping Conference,
ASME
,
07
1999
.
5.
Lott
R.G.
,
Kim
C.C.
,
Server
W.
, and
Tomes
C. A.
, “
Margins Assessment for Applying Master Curve-Data to High Copper Welds
,” Proc. of the 2000 ASME Pressure Vessel and Piping Conference,
ASME
,
07
2000
6.
ASTM E 1921-98,
Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range
,
American Society for Testing and Materials
,
West Conshohoken, PA
1999
7.
Wallin
,
Saario
and
Torronen
, “
Statistical Model for Carbide Induced, Brittle Fracture in Steel
,”
Metal Science
,
18
, pp13–16,
1984
8.
ASME Boiler and Pressure Vessel Code Case N-629, “
Use of Fracture Toughness Test Data to Establish Reference Temperature for Pressure Retaining Materials, Section XI, Division 1
,”
1999
.
9.
Baik
,
J.-M.
,
Kameda
,
J.
, and
Buck
,
O.
, “
Development of Small Punch Tests for Ductile-Brittle Transition Temperature Measurement of Temper Embrittled Ni-Cr Steels
,”
The Use of Small-Scale Specimens for Testing Irradiated Material
, ASTM STP 888,
Corwin
W. R.
and
Lucas
G. E.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1986
, pp. 92–111
10.
Geary
,
W.
,
Dutton
,
J.T.
, “
The Prediction of Fracture Toughness Properties from 3mm Diameter Punch Discs
,”
Small Specimen Test Techniques
, ASTM STP 1329,
Corwin
W. R.
,
Rosinksi
S. T.
, and
van Walle
E.
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1998
, pp. 588–601
11.
Eto
,
M.
,
Takahashi
,
H.
,
Misawa
,
T.
,
Suzuki
,
M.
,
Nishiyama
,
Y.
,
Fukaya
,
K.
, and
Jitsukawa
,
S.
, “
Development of a Miniaturized Bulge Test (Small Punch Test) for Post-Irradiation Mechanical Property Evaluation
,”
Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal Annealing and Plant Life Extension
, ASTM STP 1204,
Corwin
W. R.
,
Haggag
F. M.
, and
Server
W. L.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1993
, pp. 241–255
12.
Sinclair
,
A. N.
,
Lepik
,
O.
,
Gabbani
,
M.
,
Mukherjee
,
B.
, and
Albertini
,
E.
, “
Assessment of Fracture Toughness by a Punch Test with Miniature Specimens
,”
Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal Annealing and Plant Life Extension
, ASTM STP 1204,
Corwin
W. R.
,
Haggag
F. M.
, and
Server
W. L.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1993
, pp. 162–181
13.
Lucas
,
G. E.
, “
Review of Small Specimen Test Techniques for Irradiation Testing
,”
Metallurgical Transactions A
, Vol.
21 A
,
05
1990
, pp. 1105–1119
14.
Natishan
,
M.
,
Kirk
,
M.
,
Gunawardane
,
H.
, and
Wagenhofer
,
M.
, “
More Information from a Hardness Test than You Ever Thought Possible
,”
Small Specimen Test Techniques: Fourth Volume
. ASTM STP-1418.
Sokolov
M.
,
Landes
J.
, and
Lucas
G.
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
,
2001
15.
Natishan
,
M.E.
, and
Kirk
,
M.T.
, “
A Micromechanical Evaluation of the Master Curve
,”
Fatigue and Fracture Mechanics
, Vol.
30
, ASTM STP-1360,
Jerina
K. L.
and
Paris
P. C.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1998
, pp. 51–60.
16.
Natishan
,
M.E.
,
Wagenhofer
,
M.
, and
Kirk
,
M.T.
, “
Dislocation Mechanics Basis and Stress State Dependency of the Master Curve
,”
Fatigue and Fracture Mechanics
, Vol.
31
, ASTM STP-1389,
Halford
and
Gallagher
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
2000
17.
Kirk
,
M.T.
,
Natishan
,
M.E.
,
Wagenhofer
M.
, “
Microstructural Limits of Applicability of the Master Curve
,”
Fatigue and Fracture Mechanics: 32nd Volume
, ASTM STP- 1406,
Chona
R.
, Ed.,
American Society for Testing and Materials
,
Philadelphia, PA
,
2001
, pp. 1–16.ME
18.
Zerilli
,
F.J.
, and
Armstrong
R.W.
, “
Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations
,”
J. Appl. Phys.
 0021-4922, Vol.
65
, No.
5
,
03
1987
, pp. 1816–1825.
19.
Zerilli
,
F.J.
, and
Armstrong
,
R.W.
, “
Constitutive Equation for HCP Metals and High Strength Alloy Steels
,”
in High Strain Rate Effects on Polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials
,
Rajapakse
Y.D.S.
and
Vinson
J.R.
, Eds.,
The American Society of Mechanical Engineers
,
New York
,
1995
, pp. 121–126.
20.
Wallin
,
K.
,
Saario
,
T.
,
Törrönen
,
K.
, and
Forsten
,
J.
, “
Mechanism Based Statistical Evaluation of the ASME Reference Fracture Toughness Curve
,”
Fifth International Conference on Pressure Vessel Technology: Volume II Materials and Manufacturing
,
American Society of Mechanical Engineers
,
New York
,
1984
, pp. 966–974.
21.
Wagenhofer
,
M.
,
Natishan
,
M. E.
, and
Gunawardane
,
H.
, “
A Physically Based Model to Predict the Fracture Toughness Transition Behavior of Ferritic Steels
,”
Engineering Fracture Mechanics
, in review.
22.
Tetelman
,
A.S.
,
Wilshaw
,
T.R.
,
Rau
,
C.A.
 Jr
, “
The Critical Tensile Stress Criterion for Cleavage
,”
Int. Jour. Frac. Mech
, Vol.
4
, No.
2
,
06
1968
, pp. 147–157.
23.
Ritchie
,
R.O.
,
Knott
,
J.F.
,
Rice
,
R.
, “
On the Relationship Between Critical Tensile Stress and Fracture Stress in Mild Steels
,”
J. Mech. Phys. Sol.
, Vol.
21
,
1973
, pp. 395–410.
24.
Chen
,
J.H.
, and
Wang
,
G.Z.
, “
Study of Mechanism of Cleavage Fracture at Low Temperature
,“
Met. Trans.
, Vol.
23A
,
1992
, pp. 509–517.
25.
Armstrong
,
R.W.
,
Roberson Link
,
L.
, and
Speich
,
G.R.
, “
Analysis of Ductile-Brittle Transition Temperatures For Controlled-Rolled, Microalloyed, C-Mn Based Steels
,”
Processing, Microstructure and Properties of HSLA Steels
,
DeArdo
A.J.
, Ed.,
The Metallurgical Society
,
1988
.
26.
Shigley
,
J.E.
, and
Mischke
,
C.R.
,
Mechanical Engineering Design
, 5th ed.,
McGraw-Hill, Inc.
,
New York
,
1989
.
27.
Cahoon
,
J.R.
,
Broughton
,
W.H.
, and
Kutzak
,
A.R.
, “
The Determination of Yield Strength From Hardness Measurements
,”
Met. Trans.
, Vol.
2
,
07
1971
, pp. 1979– 1983.
28.
Ebert
,
L.J.
, “
A Handbook on the Properties of Cold Worked Steels
,” PB 121662,
Office of Technical Services, U.S. Department of Commerce
,
1955
.
29.
Taylor
,
G.I.
, “
The Mechanism of Plastic Deformation of Crystals
,”
Proc. Roy. Soc.
, Vol.
A145
,
1934
, pp. 362–404.
30.
Meyers
,
M.A.
, and
Chawla
,
K.K.
, “
Mechanical Behavior of Materials
,”
Prentice Hall
,
Upper Saddle River, New Jersey
,
1999
.
31.
Tabor
,
D.
, “
The Hardness of Metals
,”
Oxford University Press
,
London
,
1951
.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal