Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Insulation Materials: Testing and Applications: 4th Volume
By
AO Desjarlais
AO Desjarlais
1
Oak Ridge National Laboratory
?
Oak Ridge, TN
Search for other works by this author on:
RR Zarr
RR Zarr
2
National Institute of Standards and Technology
?
Gaithersburg, MD
Search for other works by this author on:
ISBN-10:
0-8031-2898-3
ISBN:
978-0-8031-2898-9
No. of Pages:
427
Publisher:
ASTM International
Publication date:
2002

The National Institute of Standards and Technology is building a new guarded hot plate apparatus (GHP) for use at temperatures from 90 to 900 K, with provision to conduct tests in various gases at controlled pressures from 0.013 Pa to 0.105 MPa (≈ 1.04 atm). Important features of the design of the new NIST GHP include: enclosure of the entire apparatus in a vacuum chamber; solid metal hot plates and cold surface plates to provide highly isothermal surfaces in contact with the test specimens; an integral closefitting edge guard to minimize the effects of edge heat losses or gains; connection guard blocks to minimize the effects of heat conduction along coolant lines, heater leads, thermometry wells, and sensor leads coming from the hot plate and the cold plates; provision of a system to provide a known clamping force between the specimens and the contacting hot and cold plate surfaces; provision of an accurate system for in-situ measurement of specimen thickness during a test; and the use of three long-stem standard platinum resistance thermometers to measure the average temperature of the meter plate and the two cold plates.

1.
Hust
,
J. G.
, and
Smith
,
D. R.
, “
Round-robin Measurements of the Apparent Thermal Conductivity of Two Refractory Insulation Materials, Using High-Temperature Guarded-Hot-Plate Apparatus
,” Report No. NBSIR 88-3087,
National Bureau of Standards
, Boulder, CO,
04
1988
, 27 pp.
2.
Salmon
,
D. R.
, and
Tye
,
R. P.
, “
A High Temperature Guarded Hot Plate Intercomparison
,” to be published in
Thermal Conductivity 26 /Thermal Expansion 14
,
Mannello
R.
, Ed.,
Technomic Publishing Co
,
Lancaster, PA
,
2002
.
3.
Robinson
,
H. E.
, “
Line Heat Source Hot Plates for Measuring the Thermal Conductivity of Insulations
,” unpublished paper presented at the Thermal Conductivity Conference held at the National Physical Laboratory,
United Kingdom
, in
07
1964
.
4.
Tye
,
R. P.
, “
Thermal Conductivity
,”
Nature
 0028-0836, vol.
204
,
1964
, pp. 636–637.
5.
Flynn
,
D. R.
,
Robinson
,
H. E.
, and
Watson
,
T. W.
, “
Progress Report: National Bureau of Standards
,” in
Proceedings 4th Conference On Thermal Conductivity (Limited distribution)
,
U.S. Naval Radiological Defense Laboratory
,
San Francisco, CA
,
10
1964
, pp. VIII-NBS-1 to VIII-NBS-14.
6.
Hahn
,
M. H.
, “
The Line Source Guarded Hot Plate for Measuring the Thermal Conductivity of Building and Insulating Materials
,” Ph.D. Dissertation,
Catholic University of America
, Washington, DC,
1971
.
7.
Hahn
,
M. H.
,
Robinson
,
H. E.
, and
Flynn
,
D. R.
, “
Robinson Line-Heat-Source Guarded Hot Plate Apparatus
,” in
Heat Transmission Measurements in Thermal Insulation
, ASTM STP 544,
Tye
R. P.
, Ed.,
American Society for Testing and Materials
,
Philadelphia
,
1974
, pp. 167–192.
8.
Powell
,
F. J.
and
Siu
,
M. C. I.
, “
Development of the Robinson Line-Heat-Source Guarded-Hot-Plate Apparatus for Measurement of Thermal Conductivity
,” in Proc.
XIV International Congress of Refrigeration
, Vol.
2
,
International Institute of Refrigeration
,
Paris, France
,
1975
, pp. 536–542.
9.
Siu
,
M. C. I.
and
Bulik
,
C
, “
National Bureau of Standards Line-Heat-Source Guarded-Hot-Plate Apparatus
,”
Rev. Sci. Instrum.
 0034-6748 Vol.
52
,
1981
, pp.1709–1716.
10.
Siu
,
M. C. I.
, “
Comparison of Results of Measurements Made on a Line-Heat-Source and a Distributed-Heat-Source Guarded-Hot-Plate Apparatus
,” in
Thermal Conductivity 17
,
Hust
J. G.
, Ed.,
Plenum Press
,
New York
,
1983
, pp. 413–426.
11.
Powell
,
F. J.
and
Rennex
,
B. G.
, “
The NBS Line-Heat-Source Guarded Hot Plate for Thick Materials
,”
Proceedings ASHRAE/DOE Conference On Thermal Performance of Exterior Envelopes of Buildings II, ASHRAE SP 38
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
Atlanta, GA
,
1983
, pp. 657–672.
12.
Rennex
,
B. G.
, “
Error Analysis for the NBS 1016 mm Guarded Hot Plate
,”
J. Thermal Insulation
, Vol.
7
,
1983
, pp. 18–51.
13.
Rennex
,
B.
, “
Summary of Error Analysis for the National Bureau of Standards 1016-mm Guarded Hot Plate and Considerations Regarding Systematic Error for the Heat Flow Meter Apparatus
,” in
Guarded Hot Plate and Heat Flow Meter Methodology
, ASTM STP 879,
Shirtliffe
C. J.
and
Tye
R. P.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1985
, pp. 69–85.
14.
Rennex
,
B. G.
, “
An Assessment of the NBS 1-m Guarded-Hot-Plate Limits
,” Rept. No. NBSIR 85-3221,
National Bureau of Standards
, Gaithersburg, MD,
08
1985
, 97 pp.
15.
Zarr
,
R. R.
and
Hahn
,
M. H.
, “
Line-Heat-Source Guarded-Hot-Plate Apparatus
,” Adjunct to ASTM C 1043-97,
12
1995
. (Available from American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19438- 2959. Request PCN No. 12-310430-61.)
16.
Healy
,
W. M.
and
Flynn
,
D. R.
, “
Thermal Modeling of a New Guarded Hot Plate Apparatus
,”
Insulation Materials: Testing and Applications:4thVolume
, ASTM STP 1426,
Desjarlais
A. O.
and
Zarr
R. R.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2002
.
17.
Ripple
,
D.
Burns
,
G., W
,. and
Scroger
,
M. G.
, “
Assessment of Uncertainties of Thermocouple Calibrations at NIST
,” Report No. NISTIR 5340,
National Institute of Standards and Technology
, Gaithersburg, MD,
01
1994
, 34 pp.
18.
Mangum
,
B. W.
,
Furukawa
,
G. T. K.
,
Kreider
,
G.
,
Meyer
,
C. W.
,
Ripple
,
D. C
,
Strouse
,
G. F.
,
Tew
,
W. L.
,
Moldover
,
M. R.
,
Johnson
,
B. Carol
,
Yoon
,
H. W.
,
Gibson
,
C. E.
, and
Saunders
,
R. D.
, “
The Kelvin and Temperature Measurements
,”
J. Res. Natl. Inst. Stand. Technol
 1044-677X, Vol.
106
,
2001
, pp. 105–149.
19.
Burns
,
G. W.
,
Strouse
,
G. F.
,
Liu
,
B. M.
, and
Mangum
,
B. W.
, “
Gold versus Platinum Thermocouples: Performance Data and an ITS-90 Based Reference Function
,” in
Temperature: Its Measurement and Control in Science and Industry
, Vol.
6
,
Schooley
J. F.
, Ed.,
American Institute of Physics
,
New York, NY
,
1992
, pp. 531–536.
20.
Burns
,
G. W.
and
Ripple
,
D. C
, “
Techniques for Fabricating and Annealing Pt/Pd Thermocouples for Accurate Measurements in the Range 0 °C to 1300 °C
,” in
Proceedings of TEMPMEKO '96, 6th International Symposium on Temperature and Thermal Measurements in Industry and Science
,
Marcarino
P.
, Ed.,
Levrotto & Bella
,
Turin, Italy
,
1997
, pp. 171–176.
21.
Burns
,
G. W.
,
Ripple
,
D. C.
, and
Battuello
,
M.
, “
Platinum versus Palladium Thermocouples: An Emf-Temperature Reference Function for the Range 0 °C to 1500 °C
,”
Metrologia
, Vol.
35
,
1998
, pp. 761–780.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal