Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Fatigue and Fracture Mechanics: 32nd Volume
By
R Chona
R Chona
editor
Search for other works by this author on:
ISBN-10:
0-8031-2888-6
ISBN:
978-0-8031-2888-0
No. of Pages:
402
Publisher:
ASTM International
Publication date:
2002

An ASTM standard test method for determination of fracture toughness has been created for advanced ceramics. Standard C 1421-99 includes three test methods and is suitable for ceramics with flat R-curve behavior, but includes some provisions for materials with rising R-curve. The three methods are: chevron notch, single-edge precracked beam, and surface crack in flexure, all of which use beams in bending. Supporting data have been collected through several major international round robin programs conducted under the auspices of the Versailles Advanced Materials and Standards program.

This paper presents the historical evolution of the standard and reflects on the strategies used to overcome the interferences of slow crack growth, R-curve, and stability. It draws parallels to the development of ASTM E 399, and it presents data that show good precision and accuracy for well-behaved materials. Materials with R-curve and susceptibility to slow crack growth have been analyzed following the recommendations in the standard, and the procedure fulfills the objective of identifying such behavior. Standard Reference Material 2100 with certified values of fracture toughness directly complements C 1421.

1.
Quinn
,
G. D.
,
Salem
,
J. A.
,
Bar-On
,
I.
, and
Jenkins
,
M. G.
, “
The New ASTM Fracture Toughness of Ceramics Standard: PS 070-97
,”
Ceramic Engineering and Science Proceedings
, Vol.
19
, No.
3
,
1998
, pp. 565–578.
2.
Fracture Mechanics Applied to Brittle Materials, ASTM STP 678
,
Freiman
S.
, Ed.,
ASTM
,
West Conshohocken, PA
,
1979
.
3.
Methods for Assessing the Structural Reliability of Brittle Materials, ASTM STP 844
,
Freiman
S. W.
and
Hudson
M.
, Eds.,
ASTM
,
West Conshohocken, PA
,
1982
.
4.
Chevron-Notched Specimens, ASTM STP 855
,
Underwood
J.
,
Freiman
S.
, and
Baratta
F.
, Eds.,
ASTM
,
West Conshohocken, PA
,
1984
.
5.
Chevron-Notch Test Experience: Metals and Non-Metals, ASTM STP 1172
,
Brown
K.
and
Baratta
F.
, Eds.,
ASTM
,
West Conshohocken, PA
,
1992
.
6.
Fractography of Ceramic and Metal Failures, ASTM STP 827
,
Mecholsky
, Jr.
J.
and
Powell
, Jr.
S. P.
, Eds.,
ASTM
,
West Conshohocken, PA
,
1984
.
7.
Awaji
,
H.
,
Kon
,
J.
, and
Okuda
,
H.
, “
The VAMAS Fracture Toughness Test Round-Robin on Ceramics
,” VAMAS Report 9,
Japan Fine Ceramic Center, Nagoya
,
12
1990
.
8.
Quinn
,
G.
,
Salem
,
J.
,
Bar-on
,
I.
,
Cho
,
K.
,
Foley
,
M.
, and
Fang
,
H.
, “
Fracture Toughness of Advanced Ceramics at Room Temperature
,”
Journal of Research of NIST
, Vol.
97
, No.
5
,
1992
, pp. 579–607.
9.
Nose
,
T.
and
Fuji
,
T.
, “
Evaluation of Fracture Toughness for Ceramic Materials by a Single-Edge-Pre-cracked-Beam Method
,”
Journal of the American Ceramic Society
, Vol.
71
, No.
5
,
1988
, pp. 328–333.
10.
Japanese Industrial Standard R 1607-1990,
Japanese Standards Association
, Tokyo, February, 1990.
11.
DIN 51 109, Draft,
German Institute for Standards
, Berlin, September, 1991.
12.
Larsen
,
D. C
,
Adams
,
J. W.
, and
Bortz
,
S.A.
, “
Survey of Potential Data for Design Allowable MIL-Handbook Utilization for Structural Silicon-Based Ceramics
,” final report on IITRI/AMMRC Contract DAAG46-79C-0078,
U.S. Army Materials and Mechanics Research Center, Watertown, MA
,
12
1981
.
13.
Reliability of Ceramics for Heat Engine Applications
,” National Materials Advisory Board Report, NMAB-357,
National Academy of Sciences, Washington, DC
,
1980
.
14.
Quinn
,
G.
, “
Properties Testing and Materials Evaluation
,”
Ceramic Engineering and Science Proceedings
, Vol.
5
, No.
5–6
,
1984
, pp. 298–311.
15.
Freiman
,
S.W.
, “
A Critical Evaluation of Fracture Mechanics Techniques for Brittle Materials
,”
Fracture Mechanics of Ceramics, Vol. 6
,
Bradt
R.
,
Hasselman
D.
, and
Lange
F.
, Eds.,
Plenum Press
,
NY
,
1983
, pp. 27–45.
16.
Simpson
,
L. A.
, “
Use of the Notched-Beam Test for Evaluation of Fracture Energies of Ceramics
,”
Journal of the American Ceramic Society
” Vol.
57
, No.
4
,
1974
, pp. 151–154.
17.
Bansal
,
G. K.
and
Duckworth
,
W. H.
, “
Fracture Surface Energy Measurements by the Notch-Beam Technique
” in ASTM STP 678,
1979
, pp. 38–46.
18.
Munz
,
D.
,
Bubsey
,
R. T.
, and
Shannon
,
J. L.
, “
Fracture Toughness Determination of Al2O3 Using Four-Point-Bend Specimens With Straight-Through and Chevron Notches
,”
Journal of the American Ceramic Society
, Vol.
63
,
1980
, pp. 300–305.
19.
Fuller
,
E. R.
, “
An Evaluation of Double-Torsion Testing—Analysis
” in ASTM STP 678,
1979
, pp. 3–18.
20.
Pletka
,
B. J.
,
Fuller
,
E. R.
, and
Koepke
,
B. G.
, “
An Evaluation of Double Torsion Testing—Experimental
,” ASTM STP 678, pp. 19–37.
21.
Chantikul
,
P.
,
Anstis
,
G.
,
Lawn
,
B.
, and
Marshall
,
D.
, “
A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: II, Strength Method
,”
Journal of the American Ceramic Society
, Vol.
64
, No.
9
,
1981
, pp. 539–543.
22.
Evans
,
A. G.
, and
Charles
,
E. A.
, “
Fracture Toughness Determinations by Indentation
,”
Journal of the American Ceramic Society
, Vol.
59
, No.
7–8
,
1976
, pp. 371–372.
23.
Anstis
,
G.
,
Chantikul
,
P.
,
Lawn
,
B.
, and
Marshall
,
D.
, “
A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements
,”
Journal of the American Ceramic Society
, Vol.
64
, No.
9
,
1981
, pp. 533–538.
24.
Barker
,
L. M.
, “
Short Bar Specimens for KIc Measurements
” in ASTM STP 678, pp. 73–82.
25.
Gillis
,
P. P.
and
Gilman
,
J. J.
, “
Double Cantilever Cleavage Mode of Crack Propagation
,”
Journal of Applied Physics
, Vol.
35
,
1964
, pp. 647–658.
26.
Freiman
,
S. W.
,
Mulville
,
D. R.
, and
Mast
,
P. W.
, “
Crack Propagation Studies in Brittle Materials
,”
Journal of Materials Science
, Vol.
8
,
1973
, pp. 1527–1533.
27.
Petrovic
,
J. J.
,
Jacobson
,
L. A.
,
Talty
,
P. K.
, and
Vasudevan
,
A. K.
, “
Controlled Surface Flaws in Hot-Pressed Si3N4
,”
Journal of the American Ceramic Society
, Vol.
58
, No.
3–4
,
1975
, pp. 113–116.
28.
Nishida
,
T.
,
Hanaki
,
Y.
, and
Pezzotti
,
G.
, “
Effect of Notch-Root Radius on the Fracture Toughness of A Fine-Grained Alumina
,”
Journal of the American Ceramic Society
, Vol.
77
, No.
2
,
1994
, pp. 606–608.
29.
Kübler
,
J.
, “
Fracture Toughness of Ceramics Using the SEVNB Method: Preliminary Results
,”
Ceramic Engineering and Science Proceedings
, Vol.
18
, No.
4
,
1997
, pp. 155–162.
30.
Kübler
,
J.
, “
Fracture Toughness of Ceramics Using the SEVNB Method: Round Robin
,” VAMAS Report 37,
Swiss Federal Laboratories for Materials Testing and Research, Dübendorf, Switzerland
, in press.
31.
Newman
,
J. C
, Jr.
and
Raju
,
I. S.
, “
An Empirical Stress-Intensity Factor Equation for the Surface Crack
,”
Engineering Fracture Mechanics
, Vol.
15
, No.
1–2
,
1981
, pp. 185–192.
32.
Ponton
,
C. B.
and
Rawlings
,
R. D.
, “
Dependence of the Vickers Indentation Fracture Toughness on the Surface Crack Length
,”
British Ceramic Transactions Journal
, Vol.
88
,
1989
, pp. 83–90.
33.
Srawley
,
J. E.
and
Brown
,
W. F.
, Jr.
, “
Fracture Toughness Testing Methods
,”
Fracture Toughness Testing and Its Applications, ASTM STP 381
,
1965
, pp. 133–198.
34.
The Slow Growth and Rapid Propagation of Cracks
,” (Second Report of a Special ASTM Committee, 1961) reprinted in
Fracture Mechanics Retrospective, Early Classic Papers (1913–1965)
,
Barsom
J. M.
, Ed., ASTM Retrospective Publication Series (RPS) 1,
ASTM
,
1987
, pp. 151–157.
35.
Progress in Measuring Fracture Toughness Using Fracture Mechanics
” (Fifth Report of a Special ASTM Committee, 1964), reprinted in
Fracture Mechanics Retrospective, Early Classic Papers (1913–1965)
,
Barsom
J. M.
, Ed., ASTM Retrospective Publication Series (RPS) 1,
ASTM
,
West Conshohocken, PA
,
1987
, pp. 181–195.
36.
Swab
,
J. J.
and
Quinn
,
G. D.
, “
Effect of Precrack ‘Halos’ on KIc Determined by the Surface Crack in Flexure Method
,”
Journal of the American Ceramic Society
, Vol.
81
, No.
9
,
1998
, pp. 2261–2268.
37.
Swab
,
J. J.
and
Quinn
,
G. D.
, “
Investigation of ‘Halos’ Associated with Fracture Toughness Precracks
,”
Ceramic Engineering and Science Proceedings
, Vol.
18
, No.
4
,
1997
, pp. 173–182.
38.
Salem
,
J. A.
,
Shannon
,
J. L.
, Jr.
,
Jenkins
,
M. G.
, and
Ferber
,
M. K.
, “
Effects of Precracking Methods on the Fracture Properties of Alumina
,”
Conference on Experimental Mechanics
,
Society for Experimental Mechanics
,
1991
, pp. 762–769.
39.
Bar-On
,
I.
,
Baratta
,
F.
, and
Cho
,
K.
, “
Crack Stability and Its Effect on Fracture Toughness of Hot-Pressed Silicon Nitride Beam Specimens
,”
Journal of the American Ceramic Society
, Vol.
79
, No.
9
,
1996
, pp. 2300–2308.
40.
Salem
,
J.
,
Ghosn
,
L.
, and
Jenkins
,
M.
, “
Back-face Strain as a Method for Monitoring Stable Crack Extension
,”
Ceramic Engineering and Science Proceedings
, Vol.
19
, No.
3
,
1998
, pp. 565–578.
41.
Baratta
,
F. I.
, “
Requirements for Flexure Testing of Brittle Materials
,”
U.S. Army Materials and Mechanics Research Center, Watertown, MA
Technical Report, TR 82-20,
1982
.
42.
Baratta
,
F. I.
, “
Requirements for Flexure Testing of Brittle Materials
,” in ASTM STP 844,
1984
, pp. 194–222.
43.
Baratta
,
F. I.
,
Quinn
,
G. D.
, and
Matthews
,
W.
, “
Errors Associated with Flexure Testing of Brittle Materials
,”
U.S. Army Materials Technology Laboratory, Watertown, MA
, Technical Report TR 87-35,
07
1987
.
44.
Nishida
,
T.
,
Shiono
,
T.
, and
Nishikawa
,
T.
, “
On the Fracture Toughness of Polycrystalline Alumina Measured by SEPB Method
,” Vol.
5
,
1989
, pp. 379–383.
45.
Sadouhi
,
M.
,
Olagnon
,
C
, and
Fantozzi
,
G.
, “
Influence of Precracking Procedure, Environment, Temperature, and Microstructure on R-curve Behavior of Alumina and PSZ Ceramics
,”
Journal of the European Ceramic Society
 0955-2219, Vol.
12
,
1993
, pp. 361–368.
46.
Grendahl
,
S.
,
Bert
,
R.
,
Cho
,
K.
, and
Bar-On
,
I.
, “
The Effects of Residual Stress and Loading Geometry on Single-Edge Precracked-Beam SEPB Fracture-Toughness Test Results
,”
Journal of the American Ceramic Society
, Vol.
83
, No.
10
,
2000
, pp. 2625–2627.
47.
Choi
,
S. R.
,
Chulya
,
A.
, and
Salem
,
J. A.
, “
Analysis of Precracking Parameters for Ceramic Single-Edge-Precracked-Beam Specimens
,”
Fracture Mechanics of Ceramics
, Vol.
10
,
Bradt
R.
et al, Eds.,
Plenum Press
,
NY
,
1992
, pp. 73–88.
48.
Srawley
,
J. E.
and
Gross
,
B.
, “
Side Cracked Plates Subjected to Combined Direct and Bending Forces
,”
Cracks and Fracture, ASTM STP 601
, pp. 559–579.
49.
Petrovic
,
J. J.
and
Mendiratta
,
M. G.
, “
Fracture from Controlled Surface Flaws
,” in ASTM STP 678, pp. 83–102.
50.
Quinn
,
G. D.
,
Gettings
,
R. J.
, and
Kübler
,
J. J.
, “
Fractography and the Surface Crack in Flexure (SCF) Method for Evaluating Fracture Toughness of Ceramics
,”
Fractography of Glasses and Ceramics, Ceramic Transactions
, Vol.
64
,
ACS
,
Westerville, OH
,
1996
, pp. 107–144.
51.
Gettings
,
R. J.
and
Quinn
,
G. D.
, “
Surface Crack in Flexure (SCF) Measurements of the Fracture Toughness of Advanced Ceramics
,”
Ceramic Engineering and Science Proceedings
, Vol.
16
, No.
4
,
1995
, pp. 539–547.
52.
Quinn
,
G.
,
Kübler
,
J.
, and
Gettings
,
R.
, “
Fracture Toughness of Advanced Ceramics by the Surface Crack in Flexure (SCF) Method: A VAMAS Round Robin
,” VAMAS Technical Report 17,
NIST
06
1994
.
53.
Quinn
,
G. D.
,
Gettings
,
R. J.
, and
Kübler
,
J. J.
, “
Fracture Toughness of Ceramics by the Surface Crack in Flexure (SCF) Method
,”
Fracture Mechanics of Ceramics
, Vol.
11
,
Bradt
R. C.
,
Hasselman
D. P. H.
,
Munz
D.
,
Sakai
M.
, and
Yashevchenko
V.
, Eds.,
Plenum Press
,
N.Y.
,
1996
, pp. 203–218.
54.
Salem
,
J.
,
Shannon
,
J.
Jr.
, and
Jenkins
,
M. G.
, “
Some Observations in Fracture Toughness and Fatigue Testing with Chevron-Notched Specimens
,” ASTM STP 1172,
1992
, pp. 9–25.
55.
Salem
,
J.
,
Ghosn
,
L.
,
Jenkins
,
M.
, and
Quinn
,
G.
, “
Stress Intensity Factor Coefficients for Chevron Notched Flexure Specimens and a Comparison of Fracture Toughness Methods
,”
Ceramic Engineering and Science Proceedings
, Vol.
20
, No.
3
,
1999
, pp. 503–512.
56.
Salem
,
J.
,
Ghosn
,
L.
, and
Jenkins
,
M.
, “
Report on Stress Intensity Factor Coefficients of Chevron-Notched Flexure Specimen
,”
20
04
1998
, Research Report for C 1421 on file at ASTM.
57.
Bluhm
,
J. I.
, “
Slice Synthesis of a Three Dimensional ‘Work of Fracture’ Specimen—for Brittle Materials Testing
,”
Engineering Fracture Mechanics
, Vol.
7
,
1975
, pp. 593–604.
58.
Quinn
,
G. D.
,
Xu
,
K.
,
Gettings
,
R.
,
Salem
,
J. A.
, and
Swab
,
J. J.
, “
Standard Reference Material 2100: Fracture Toughness of Ceramics
,” this publication, pp. 336–350.
59.
Grelotti
,
R. A.
, “
Critical Evaluation of Fracture Toughness Testing of Zirconia Using ASTM C 1421
,” M.S. thesis,
Worcester Polytechnic Institute, Worcester, MA
,
1999
.
60.
Baratta
,
F. I.
and
Fett
,
T.
, “
The Effect of Load and Crack Misalignment on Stress Intensity Factors for Bend-Type Fracture Toughness Specimens
,”
Journal of Testing and Evaluation
 0090-3973, Vol.
28
, No.
2
,
2000
, pp. 96–102.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal