Skip to Main Content
Skip Nav Destination
ASTM Select Technical Papers
Multiaxial Fatigue and Deformation: Testing and Prediction
By
S Kalluri
S Kalluri
1
Ohio Aerospace Institute NASA Glenn Research Center
at
Lewis Field Cleveland, Ohio Symposium Co-Chairman and Editor
Search for other works by this author on:
PJ Bonacuse
PJ Bonacuse
2
Vehicle Technology Directorate US. Army Research Laboratory NASA Glenn Research Center
at
Lewis Field Cleveland, Ohio Symposium Co-Chairman and Editor
Search for other works by this author on:
ISBN-10:
0-8031-2865-7
ISBN:
978-0-8031-2865-1
No. of Pages:
452
Publisher:
ASTM International
Publication date:
2000

Grain boundaries, microstructural barriers and differences in stress/strain state play a dominant role in the early stages of the fatigue crack growth of metals. Many studies on the growth of short cracks have revealed anomalies in the behavior predicted by LEFM analysis. A simulation of fatigue crack growth is presented. The polycrystalline metal was modeled as an aggregate of hexagonal grains with a different crystallographic orientation of each grain. The effect of grain boundaries on Stage I crack growth is considered in the model. The mode of shear crack growth is used to compute the crack growth. This mode is analyzed on the basis of microstructural crack growth within the first few grains, where the crack growth decelerates as the crack tip gets closer to the grain boundary. Normal crack growth has been considered for those cracks which are longer than microstructural cracking (physically short cracks). The transition from Stage I to Stage II growth is considered. The model is applied for thin-walled tubular specimens of the ferritic steel AISI 1015 and the aluminum alloy AlMgSi1 subjected to tension and torsion loading as well as in-phase and out-of-phase combined tension-torsion loading, sequential tension and torsion loading. The microstructural crack pattern and crack distribution can be successfully simulated with the model, and the simulated microstructural crack growth rate is presented.

1.
Hobson
,
P. D.
,
Brown
,
M. W.
,
de los Rios
,
E. R.
, “
Two Phases of Short Crack Growth in Medium Carbon Steel
,”
The Behaviour of Short Fatigue Cracks
,
EGF Pub.
1,
Miller
K. J.
and
de los Rios
E. R.
, Eds.,
London
,
1986
, pp. 441–459.
2.
Bannantine
,
J. A.
, “
Observation of Tension and Torsion Fatigue Cracking Behaviour and the Effect on Multiaxial Damage Correlation
,”
University of Illinois UILN-Eng
. 86-3605, Rep. No. 128,
1986
.
3.
Doquet
,
V.
and
Pineau
,
A
., “
Multiaxial Low-cycle Fatigue Behaviour of a Mild Steel
,”
Fatigue under Biaxial and Multiaxial Loading
,
ESIS
10,
Kussmaul
K.
,
Mcdiarmid
D.
, and
Socie
D.
, Eds.,
London
,
1991
, Pp. 81–101.
4.
Prochotta
,
J.
, “
Verhalten kurzer Risse in Stählen bei biaxialen Betriebsbelastungen
,” Dissertation
RWTH Aachen
,
1991
.
5.
Vormwald
,
M.
, “
Anrißlebensdauervorhersage auf der Basis der Schwingbruchmechanik für kurze Risse
,” Publication of
Instituts für Stahlbau und Werkstoffmechanik
, Book 47,
TH Darmstadt, Darmstadt
,
1989
.
6.
Miller
,
K. J.
, “
Metal Fatigue—Past, Current and Future
,”
Proceedings of the Institution of Mechanical Engineers
, Preprint No. 3,
1991
.
7.
Bomas
H.
,
Lohrmann
,
M.
,
Löwisch
,
G.
, and
Mayr
,
P.
, “
Riβbildung und -ausbreitung im Stahl 1.3964 unter mehrachsiger Schwingbeanspruchung
,” Report for 25.
Symposium of DVM-AK Bruchvorgange
,
1993
, pp. 75–84.
8.
Brown
,
M. W.
,
Miller
,
K. J.
,
Fernando
,
U. S.
,
Yates
,
J. R.
, and
Suker
,
D. K.
, “
Aspect of Multiaxial Fatigue Crack Propagation
,”
Proceedings, 4th International Conference on Biaxial/Multiaxial Fatigue
, ESIS,
Paris, France
, Vol.
I
,
1994
, pp. 3–16.
9.
Hug
,
J.
,
Einfluß der Mehrachsigeit auf die Schädigung bei schwingender Beanspruchung
. Dissertation
Technische Universitaet Clausthal
, Germany,
1994
.
10.
Löwisch
,
G.
,
Bomas
,
H.
, and
Mayr
,
P.
, “
Fatigue Crack Initiation and Propagation in Ductile Steels Under Multiaxial Loading
,”
Proceedings, 4th International Conference on Biaxial/Multiaxial Fatigue
, ESIS,
Paris, France
, Vol.
II
,
1994
, pp. 27–42.
11.
McDowell
,
D. L.
and
Poindexter
,
V.
, “
Multiaxial Fatigue Modeling Based on Microcrack Propagation: Stress State and Amplitude Effects
,”
Proceedings, 4th International Conference on Biaxial/Multiaxial Fatigue
, ESIS, Paris, France, Vol.
I
,
1994
, pp. 115–130.
12.
James
,
M. N.
and
de los Rios
,
E. R.
, “
Variable Amplitude Loading of Small Fatigue Cracks in 626-T6 Aluminum Alloy
,”
Fatigue Fracture Engineering Materials Structures
Vol.
19
, No.
4
,
1994
, pp. 413–426.
13.
Socie
,
D.
and
Furman
,
S.
, “
Fatigue Damage Simulation Models for Multiaxial Loading
,”
Fatigue 96, 6th International Fatigue Congress
,
Lütjering
G.
and
Nowack
H.
, Eds.,
Berlin, Germany
,
1996
, pp. 967–976.
14.
Hoshide
T.
and
Socie
,
D. F.
, “
Crack Nucleation and Growth Modeling in Biaxial Fatigue
,”
Engineering Fracture Mechanics
, Vol.
29
, No.
3
,
1988
, pp. 287–299.
15.
Argence
,
D.
,
Weiss
,
J.
and
Pineu
,
A.
, “
Observation and Modeling of Transgranular and Intergranular Multiaxial Low Cycle Fatigue Damage of Austenitic Stainless Steels
,”
Proceedings, 4th International Conference on Biaxial/Multiaxial Fatigue
, ESIS,
Paris, France
, Vol.
I
,
1994
, pp. 309–322.
16.
Hoshide
,
T.
and
Kusuura
,
K.
, “
Life Prediction by Simulation of Crack Growth in Notched Components with Different Microstructures and under Multiaxial Fatigue
,”
Fatigue Fracture Engineering Materials Structures
, Vol.
21
,
1998
, pp. 201–213.
17.
Taylor
,
D.
and
Knott
,
J. F.
, “
Fatigue Crack Propagation Behaviour of Short Cracks: The Effect of Microstructure
,”
Fatigue Fracture Engineering Materials Structures
, Vol.
4
,
1981
, p. 147.
18.
Miller
,
K. J.
, “
Multiaxial Fatigue: A Review
,” DVM-Final Colloqium: Schädigungsfrühererkennung und Schadensablauf bei metallischen Bauteilen, Darmstadt,
1993
.
19.
Miller
,
K. J.
, “
Initiation and Growth Rates of Short Fatigue Cracks
,”
Fundamentals of Deformation and Fracture
,
Bilby
B. A.
,
Miller
K. J.
, and
Willis
J. R.
, Eds.,
Sheffield
,
1984
.
20.
Schram
,
A.
and
Liu
,
J.
, “
Einfluβ der Mehrachsigkeit auf die Schädigung bei Schwingender Beanspruchung
,” Final Report Vol
II
, DFG — Forschungsvorhaben Ze 248/4,
1993
.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal