Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Marine Corrosion in Tropical EnvironmentsAvailable to Purchase
By
SW Dean
SW Dean
1
Air Products and Chemicals, Inc.
?
Allentown, PA Symposium co-chair and co-editor
Search for other works by this author on:
GH-D Delgadillo
GH-D Delgadillo
2
Universidad del Mayab
?
Merida, Mexico Symposium co-chair and co-editor
Search for other works by this author on:
JB Bushman
JB Bushman
3
Bushman & Associates
?
Medina, OH Symposium co-chair and co-editor
Search for other works by this author on:
ISBN-10:
0-8031-2873-8
ISBN:
978-0-8031-2873-6
No. of Pages:
320
Publisher:
ASTM International
Publication date:
2000

Sulfate reducing bacteria (SRB) growth induces several important features in the steel/seawater interface such as changes in pH, redox potential, ion concentrations and structure and composition of corrosion product films. These features, absent in abiotic media, produce drastic changes in the corrosion behavior of the metal. In addition to pitting and crevice corrosion, conditions conductive to the enhancement of corrosion-fatigue crack growth and of hydrogen embrittlement can be generated by the metabolic production of hydrogen sulfide by SRB. While SRB produces more hydrogen entry into susceptible metals when compared with similar levels of abiotic sulfides, corrosion fatigue crack growth rates are slower in biological environments than in similar abiotic conditions. Moreover, bacteria also decrease the performance of cathodic protection of steel and protective coatings in marine environments. A review of the literature and recent results from our laboratories involving the use of electrochemical techniques for corrosion assessment, surface analyses and different types of microscopy also are briefly described.

1.
Sanders
,
P. F.
, and
Hamilton
,
W. A.
Biological and Corrosion Activities of Sulfate-Reducing Bacteria in Industrial Process Plant
,”
Biologically Induced Corrosion
,
Dexter
S. C.
, Ed.,
NACE International
,
Houston, TX
,
1986
, pp. 47–68.
2.
Hamilton
,
W. A.
, and
Maxwell
,
S.
Biological and Corrosion Activities of Sulfate-Reducing Bacteria within Natural Biofilms
,”
Biologically Induced Corrosion
,
Dexter
S. C.
, Ed.,
NACE International
,
Houston, TX
,
1986
, pp. 131–136.
3.
Videla
,
H. A.
,
de Mele
,
M. F. L.
, and
Brankevich
,
G.
Assessment of Corrosion and Microfouling of Several Metals in Polluted Seawater
,”
Corrosion
, Vol.
44
,
1988
, pp. 423–426.
4.
Salvarezza
,
R. C.
, and
Videla
,
H. A.
The Influence of Sulfate-Reducing Bacteria on the Electrochemical Behavior of Steel in Seawater
,” Marine Biology, Proceedings 5th International Congress on Marine Corrosion and Fouling,
Barcelona, Spain
,
1980
, pp. 7–12.
5.
Costerton
,
J. W.
, and
Geesey
,
G. G.
The Microbial Ecology of Surface Colonization and of Consequent Corrosion
,”
Biologically Induced Corrosion
,
Dexter
S. C.
, Ed.,
NACE International
,
Houston, TX
,
1986
, pp. 223–232.
6.
Hamilton
,
W. A.
Sulfate-Reducing Bacteria and Anaerobic Corrosion
,”
Annual Reviews of Microbiology
 0066-4227,
1985
, Vol.
39
, pp. 195–217.
7.
Characklis
,
W. G.
, and
Marshall
,
K. C.
Biofilms: A Basis for an Interdisciplinary Approach
,” Biofilms,
Characklis
W. G.
,
Marshall
K. C.
, Eds.,
John Wiley & Sons, Inc.
,
New York
,
1990
, pp.3–15.
8.
Videla
,
H. A.
Electrochemical Aspects of Biocorrosion
,” Bioextraction and Biodeterioration of Metals,
Gaylarde
C. C.
,
Videla
H. A.
, Eds.,
Cambridge University Press
,
Cambridge,UK
,
1995
, pp. 85–127.
9.
Videla
,
H. A.
Biofilms and Biofouling
,” Manual of Biocorrosion,
CRC-Lewis Publishers
,
Boca Raton, FL
,
1996
, pp.47–71.
10.
Videla
,
H. A.
Biocorrosion Problems in the Marine Environment: New Perspectives
,” Developments in Marine Corrosion,
Campbell
S. A.
,
Campbell
N.
,
Walsh
F. C.
, Eds.,
Royal Society of Chemistry
,
Cambridge, UK
,
1998
, pp. 1–25.
11.
Geesey
,
G. G.
, “
Microbial Exopolymers; Ecological and Economic Considerations
,”
Am. Soc. Microbiol. News
,
1982
, Vol.
48
, pp. 9–14.
12.
Videla
,
H. A.
, “
Corrosion Inhibition in the Presence of Microbial Corrosion
,” CORROSION/96, Paper 223,
NACE International
,
Houston, TX
,
1996
.
13.
Videla
,
H. A.
, “
An Overview of Mechanisms by Which Sulfate-Reducing Bacteria Influence Corrosion of Steel in Marine Environments
,”
Biofouling
(in press).
14.
Lee
,
W.
,
Lewandowski
,
Z.
,
Nielsen
,
P. H.
, and
Hamilton
,
W. A.
,
Biofouling
, Vol.
8
,
1995
, pp. 165–194.
15.
Cragnolino
,
G.
, and
Tuovinen
,
O. H.
The Role of Sulfate-Reducing Bacteria and Sulfur-Oxidizing Bacteria in the Localized Corrosion of Iron-Base Alloys-A Review
,”
International Biodeterioration
, Vol.
20
,
1984
, pp. 9–26.
16.
Videla
,
H. A.
Microbially Induced Corrosion : An Updated Overview
,” Biodeterioration and Biodegradation 8,
Rossmoore
H.W.
, Ed.,
Elsevier Applied Science
,
London, UK
,
1991
, pp. 63–88.
17.
Szklarska-Smialowska
,
Z
. “
Effects of Environmental Factors in Pitting. Composition of the Electrolyte
,” Pitting Corrosion of Metals,
NACE International
,
Houston, TX
,
1986
, pp. 201–219.
18.
Shoesmith
,
D. W.
,
Taylor
,
P.
,
Bailey
,
M. G.
, and
Owen
,
D. G.
The Formation of Ferrous Monosulfide Polymorphs During the Corrosion of Iron by Aqueous Hydrogen Sulfide at 21 C
,”
J. Electrochem. Soc.
 0013-4651, Vol.
127
,
1980
, pp. 1007–1019.
19.
Rickard
,
D. T.
The Chemistry of Iron Sulfide Formation at Low Temperature
,”
Stockh.Contr.Geol.
, Vol.
20
,
1969
, pp. 67–95.
20.
Duquette
,
D. J.
, and
Ricker
,
R. E.
Electrochemical Aspects of Microbially Induced Corrosion
,” Biologically Induced Corrosion,
Dexter
S. C.
, Ed.,
NACE International
,
Houston, TX
,
1986
, pp. 121–130.
21.
Videla
,
H. A.
Corrosion of Mild Steel Induced by Sulfate-Reducing Bacteria. A Study of the Passivity Breakdown by Biogenic Sulfides
,” Biologically Induced Corrosion,
Dexter
S. C.
, Ed.,
NACE International
,
Houston, TX
,
1986
, pp. 162–171.
22.
Salvarezza
,
R. C
,
Videla
,
H. A
, and
Arvía
,
A. J.
The Electrodissolution and Passivation of Mild Steel in Alkaline Sulphide Solutions
,”
Corrosion Science
 0010-938X, Vol.
22
,
1982
, pp. 815–829.
23.
Salvarezza
,
R. C.
,
Videla
,
H. A.
, and
Arvía
,
A. J.
The Electrochemical behavior of Mild Steel in Phosphate-borate-sulfide Solutions
,”
Corrosion Science
 0010-938X, Vol.
23
,
1983
, pp. 717–732.
24.
Hamilton
,
W. A.
Sufate-Reducing Bacteria and their Role in Biocorrosion
” Biofouling and Biocorrosion in Industrial Water Systems,
Flemming
H. C.
,
Geesey
G. G.
, Eds.,
Springer-Verlag
,
Berlin
,
1991
, pp 187–193.
25.
Videla
,
H. A.
Electrochemical Interpretation of the Role of Microorganisms in Corrosion
,”
Biodeterioration
,
7
Houghton
D. R.
,
Smith
R. N.
and
Rossmoore
H. O. W.
, Eds.,
Elsevier Applied Science
,
London, UK
,
1988
, pp. 359–371.
26.
Crolet
,
J. L.
,
Daumas
,
S.
, and
Magot
,
M
. “
pH Regulation by Sulfate-Reducing Bacteria
,” CORROSION/93, Paper 303,
NACE International
,
Houston, TX
,
1993
.
27.
Campaignolle
,
X.
,
Luo
,
J. S.
,
Bullen
,
J.
,
White
,
D. C.
,
Guezennec
,
J.
, and
Crolet
,
J. L.
, “
Stabilization of Localized Corrosion of Carbon Steel by Sulfate-Reducing Bacteria
,” CORROSION/93, Paper 302,
NACE International
,
Houston, TX
,
1993
.
28.
Crolet
,
J. L.
, and
Magot
,
M.
Observations of Non-SRB Sulfidogenic Bacteria from Oilfield Production Facilities
,” CORROSION/95, Paper 188,
NACE International
,
Houston, TX
,
1995
.
29.
De Cristofaro
,
N. B.
,
Acosta
,
C. A.
,
Salvarezza
,
R. C.
, and
Videla
,
H. A
. “
The Effect of Sulfides on the Electrochemical Behaviour of AISI 304 Stainless Steel in Neutral Buffered Solutions
,”
Corrosion
, Vol
42
,
1984
, pp. 240–242.
30.
Newman
,
R. C.
,
Webster
,
B. I.
, and
Kelly
,
R. G.
The Electrochemistry of SRB Corrosion and Related Inorganic Phenomena
,”
ISIJ International
, Vol.
31
,
1991
, pp. 201–209.
31.
Hardy
,
J. A.
, and
Bown
,
J. L.
The Corrosion of Mild Steel by Biogenic Sulfide Films Exposed to Air
,”
Corrosion
, Vol.
40
,
1984
, pp. 650–654.
32.
Lee
,
W. C.
,
Lewandowski
,
Z.
,
Okabe
,
S.
,
Characklis
,
W. G.
, and
Avci
,
R.
Corrosion of Mild Steel underneath Aerobic Biofilms Containing Sulfate-Reducing Bacteria, Part I: At Low Dissolved Oxygen Concentration
,”
Biofouling
, Vol.
7
,
1993
, pp. 197–216.
33.
Lee
,
W. C.
,
Lewandowski
,
Z.
,
Nielsen
,
P. H.
,
Morrison
,
M.
,
Characklis
,
W. G.
, and
Avci
,
R.
Corrosion of Mild Steel Underneath Aerobic Biofilms Containing Sulfate-Reducing Bacteria, Part II: At High Dissolved Oxygen Concentration
,”
Biofouling
Vol.
7
,
1993
, pp. 217–239.
34.
Schaschl
,
E.
Elemental Sulfur as a Corrodent in Deaerated, Neutral Aqueous Solutions
,”
Materials Performance
, Vol.
19
,
1980
, pp. 9–12.
35.
Schmitt
,
G.
Effect of Elemental Sulfur on Corrosion in Sour Gas Systems
,”
Corrosion
Vol.
47
,
1991
, pp. 285–291.
36.
Tiller
,
A. K.
, “
Aspects of Microbial Corrosion
,” Corrosion Processes,
Parkins
R. N.
, (Ed.),
Appl. Sci. Publ.
,
London, UK
, Chapter 3,
1982
, pp 115–125.
37.
Mara
,
D. D.
, and
Williams
,
D. J.
The Mechanisms of Sulfide Corrosion by Sulfate-Reducing Bacteria
,”
Biodeterioration Materials
, Vol.
2
,
1982
, pp. 103–113.
38.
McNeil
,
M. B.
,
Jones
,
J.
, and
Little
,
B. J.
Mineralogical Fingerprints for Corrosion Processes Induced by Sulfate-Reducing Bacteria
,” CORROSION/91, Paper 580,
NACE International
,
Houston, TX
,
1991
.
39.
Lee
,
W. C.
, and
Characklis
,
W. G.
Anaerobic Corrosion Processes of Mild Steel in the Presence and Absence of Anaerobic Biofilms
,”
Biodeterioration and Biodegradation
8
,
Rossmoore
H. W.
(Ed.),
Elsevier Applied Science
,
London, UK
,
1991
, pp 89–111.
40.
Lee
,
W. C.
and
Characklis
,
W. G.
, “
Corrosion of Mild Steel under Anaerobic Biofilm
,”
Corrosion
, Vol.
49
,
1993
, pp. 186–198.
41.
Videla
,
H. A.
,
Swords
,
C. L.
,
de Mele
,
M. F. L.
,
Edyvean
,
R. G.
,
Watkins
,
P.
, and
Beech
,
I. B.
The Role of Iron in SRB Influenced Corrosion of Mild Steel
,” CORROSION/98, Paper 289,
NACE International
,
Houston, TX
,
1998
.
42.
Videla
,
H. A.
, “
Practical Cases: Biocorrosion of Carbon steel in Anaerobic Environments
”, Manual of Biocorrosion,
CRC-Lewis Publishers
,
Boca Raton, FL
,
1996
, pp. 179–187.
43.
Videla
H. A.
,
Edyvean
,
R. G.
,
Swords
,
C. L.
,
de Mele
,
M. F. L.
, and
Beech
,
I. B.
Comparative Study of the Corrosion Product Films Formed in Biotic and Abiotic Sulfide Media
,” CORROSION/99, Paper 163,
NACE International
,
Houston, TX
,
1999
.
44.
Beech
,
I. B.
,
Zinkevich
,
V.
,
Tapper
,
R.
, and
Avci
,
R.
Study of the Interaction of Exopolymers Produced by Sulphate-Reducing Bacteria with Iron Using X-ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ionisation Mass Spectrometry
,”
Journal of Microbiological Methods
, Vol.
36
,
1999
, pp. 3–10.
45.
Herro
,
H. M.
Tubercle Formation on Ferrous Alloys in Low-flow Systems
”, CORROSION/93, Paper 261,
NACE International
,
Houston, TX
,
1993
.
46.
Misawa
,
K.
,
Hashimoto
,
K.
, and
Shimodaira
,
S.
The Mechanism of Formation of Iron Oxide and Oxyhydroxides in Aqueous Solutions at Room Temperature
”,
Corrosion Science
 0010-938X, Vol.
14
,
197
, pp. 131–149.
47.
Swords
,
C. L.
The Corrosion of Steels in Microbial and Non-Microbial Hydrogen Sulfide Environments
,” Ph.D. Thesis,
The University of Leeds
, Leeds, UK,
1998
, pp. 161–222.
48.
Edyvean
,
R. G. J.
,
Maines
,
A. D.
,
Hutchinson
,
C. J.
,
Silk
,
N. J.
, and
Evans
,
L. V.
Interactions between Cathodic Protection and Bacterial Settlement on Steel in Seawater
,”
Int. Biodet. & Biodegrad.
, Vol.
29
,
1992
, pp. 251–271.
49.
Guezennec
,
J. G.
Cathodic Protection and Microbially Induced Corrosion
,”
International Biodeterioration & Biodegradation
, Vol.
34
,
1994
, pp. 275–288.
50.
Dexter
,
S. C.
, and
Lin
,
S. H.
Effect of Marine Biofilms on Cathodic Protection
”,
International Biodeterioration & Biodegradation
, Vol.
29
,
1992
, pp. 231–249.
51.
Gomez de Saravia
,
S. G.
,
de Mele
,
M. F. L.
,
Videla
,
H. A.
, and
Edyvean
,
R. G. J.
Bacterial Biofilms on Cathodically Protected Stainless Steel
”,
Biofouling
, Vol.
11
,
1997
, pp. 1–17.
52.
Videla
,
H. A.
,
Gomez de Saravia
,
S. G.
,
de Mele
,
M. F. L.
,
Hernandez
,
G.
, and
Hartt
,
W.
The Influence of Microbial Biofilms on Cathodic Protection at Different Temperatures
”, CORROSION/93, Paper 298,
NACE International
,
Houston, TX
,
1993
.
53.
Edyvean
,
R. G. J.
Interactions between Biofouling and the Deposit Formed on Cathodically Protected Steel in Seawater
”, Marine Biology, Proceedings 6th International Congress on Marine Corrosion and Fouling,
Athens, Greece
,
1984
, pp. 469–483.
54.
de Mele
,
M. F. L.
,
Gomez de Saravia
,
S. G.
and
Videla
,
H. A.
An Overview on Biofilms and Calcareous Deposits Interrelationships on Cathodically Protected Steel Surfaces
,” Proceedings of 1995 International Conference on MIC”,
Angell
P.
,
Borenstein
S. W.
,
Buchanan
R. A.
,
Dexter
S. C.
,
Dowling
N. J. E
,
,
Little
B. J.
,
Lundin
C. D.
,
MacNeil
M. B.
,
Pope
D. H.
,
Tatnall
R. E.
,
White
D. C.
, and
Ziegenfuss
H. G.
, Eds.,
NACE International
,
Houston, TX
,
1995
, pp. 50/1–50/8.
55.
Little
,
B. J.
and
Wagner
,
P. A.
Interrelationship between Marine Biofouling and Cathodic Protection
,”
Materials Performance
, Vol.
32
,
1993
, pp. 17–20.
56.
Jones
,
D. A.
Environmentally Induced Cracking
”, Principles and Prevention of Corrosion, 2nd Edition,
Prentice Hall
,
Upper Saddle River, NJ
,
1996
, pp. 235–290.
57.
Thomas
,
C. J.
,
Edyvean
,
R. G. J
, and
Brook
,
R.
Biologically Enhanced Corrosion Fatigue
,”
Biofouling
, Vol.
1
,
1988
, pp. 65–77.
58.
Edyvean
,
R. G. J.
,
Benson
,
J.
,
Thomas
,
C. J.
,
Beech
,
I. B.
, and
Videla
,
H. A.
Biological Influences on Hydrogen Effects in Steel in Seawater
,” CORROSION/97, Paper 206,
NACE International
,
Houston, TX
,
1997
.
59.
Edyvean
,
R. G. J.
,
Benson
,
J.
,
Beech
,
I. B.
, and
Videla
,
H. A.
Microbiological Influences on Hydrogen Effects on Steels
,”
Bolcich
J. C.
, and
Veziroglu
T. N.
, Eds.,
Hydrogen Energy Progress XII
, Vol.
3
,
1998
, pp. 1755–1762.
60.
Edyvean
,
R. G. J.
,
Benson
,
J.
,
Thomas
,
C. J.
,
Beech
,
I. B.
and
Videla
,
H. A.
Biological Influences on Hydrogen Effects in Steel in Seawater
,”
Materials Performance
, Vol.
37
,
1998
, pp. 40–44.
61.
Edyvean
,
R. G. J.
, “
Biodeterioration Problems of North Sea Oil and Gas Production
,”
International Biodeterioration
, Vol.
23
,
1987
, pp. 199–231.
This content is only available via PDF.
You do not currently have access to this chapter.

or Create an Account

Close Modal
Close Modal