Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Fatigue and Fracture Mechanics: 31st Volume
By
GR Halford
GR Halford
1
NASA Glenn Research Center
at
Lewis Field; Cleveland, OH
;
Symposium Chairman and Editor
Search for other works by this author on:
JP Gallagher
JP Gallagher
2
University of Dayton Research Institute
,
Dayton, OH
;
Symposium Chairman and Editor
Search for other works by this author on:
ISBN-10:
0-8031-2868-1
ISBN:
978-0-8031-2868-2
No. of Pages:
560
Publisher:
ASTM International
Publication date:
2000

The high cycle fatigue (HCF) resistance of Ti-6Al-4V for gas turbine engine pplications is studied when the material is first subjected to low cycle fatigue (LCF). The high cycle fatigue (HCF) threshold is determined after small LCF surface cracks are formed in notch tension specimens. LCF loading at two stress ratios, R = 0.1 and R -1.0, is used to initiate the LCF cracks, which are detected using direct current potential difference (DCPD). The surface crack sizes are measured under load using a static loading fixture and a scanning electron microscope (SEM). In addition to the SEM surface measurements, heat tinting is used to mark the crack profiles before HCF testing so that fractography can be used after failure to measure the 2D crack geometry. The LCF surface-cracked specimens are tested at room temperature in lab air at 600 Hz using a step-loading procedure at two stress ratios, R = 0.1 and R = 0.5. The LCF loading history is found to affect the HCF threshold compared to what is predicted from long crack threshold values obtained from other crack geometries. Variations in HCF crack growth thresholds obtained on specimens with LCF crack sizes from 25 to 175 μm are attributed to overload and underload effects from the LCF precracking.

1.
Thomson
,
D. E.
and
Griffin
,
J. T.
, “
The National Turbine Engine High Cycle Fatigue Program
,”
Global Gas Turbine News
, Vol.
39
,
ASME International
,
1999
, pp. 14–17.
2.
Engine Structural Integrity Program
, USAF MIL-STD-1783,
11
1984
.
3.
Nicholas
,
T.
, “
Critical Issues in High Cycle Fatigue
,”
International Journal of Fatigue
 0142-1123, Vol.
21
, Supp.
1
,
1999
, pp. S221–S231.
4.
Nicholas
,
T.
and
Zuiker
,
J. R.
, “
On the Use of the Goodman Diagram for High Cycle Fatigue Design
,”
International Journal of Fracture
, Vol.
80
,
1996
, pp. 219–235.
5.
Akita
,
K.
,
Misawa
,
H.
,
Tobe
,
S.
, and
Kodama
,
S.
, “
Fatigue Crack Propagation Behavior of Ti-6Al-4V Alloy under Simplified Loading with a Single Overload
,”
Fatigue '93
,
Bailon
J. P.
and
Diskson
J. I.
, Eds., Vol.
3
,
EMAS
,
Warley U.K.
,
1993
, pp. 1575–1580.
6.
Sheldon
,
J. W.
,
Bain
,
K. R.
, and
Donald
,
K. J.
, “
Investigation of the Effects of Shed-Rate, Initial Kmax, and Geometric Constraint on ΔKKth in Ti-6Al-4V at Room Temperature
,”
International Journal of Fatigue
 0142-1123, Vol.
21
,
1999
, pp. 733–741.
7.
Lenets
,
Y. N.
and
Nicholas
,
T.
, “
Load History Dependence of Fatigue Crack Thresholds for Ti-Alloy
,”
Engineering Fracture Mechanics
, Vol.
60
,
1998
, pp. 187–203.
8.
Makhutov
,
N.
,
Romanov
,
A.
, and
Gadenin
,
M.
, “
High-Temperature Low-Cycle Fatigue Resistance Under Superimposed Stresses at Two Frequencies
,”
Fatigue of Engineering Materials and Structures
, Vol.
1
,
1979
, pp. 281–285.
9.
Zaitsev
,
G. Z.
and
Faradzhov
,
R. M.
,
Metallovedenie i Termicheskaya Obrabotka
, Vol.
2
,
1970
, pp. 44–46.
10.
Ouyang
,
J.
,
Wang
,
Z.
,
Song
,
D.
, and
Yan
,
M.
, “
Influence of High Frequency Vibrations on the Low Cycle Fatigue Behavior of a Superalloy at Elevated Temperature
,”
Low Cycle Fatigue
, ASTM STP 942,
American Society for Testing and Materials
,
Philadelphia, PA
,
1988
, pp. 961–971.
11.
Goodman
,
R. C.
and
Brown
,
A. M.
, “
High Frequency Fatigue of Turbine Blade Material
,” AFWAL-TR-82-4151,
Wright-Patterson AFB
, OH,
10
1982
.
12.
Guedou
,
J. Y.
and
Rongvaux
,
J. M.
, “
Effect of Superimposed Stresses at High Frequency on Low Cycle Fatigue
,”
Low Cycle Fatigue
, ASTM STP 942,
American Society for Testing and Materials
,
Philadelphia, PA.
,
1988
, pp. 938–960.
13.
Powell
,
B. E.
,
Duggan
,
T. V.
, and
Jeal
,
R.
, “
The Influence of Minor Cycles on Low Cycle Fatigue Crack Propagation
,”
International Journal of Fatigue
 0142-1123, Vol.
4
,
1982
, pp. 4–14.
14.
Powell
,
B. E.
,
Henderson
,
I.
, and
Duggan
,
T. V.
, “
The Effect of Combined Major and Minor Stress Cycles on Fatigue Crack Growth
,”
Second International Congress on Fatigue (Fatigue '84)
,
1984
, pp. 893–902.
15.
Hawkyard
,
M.
,
Powell
,
B. E.
,
Hussey
,
I.
and
Grabowski
,
L.
, “
Fatigue Crack Growth under Conjoint Action of Major and Minor Stress
,”
Fatigue & Fracture of Engineering Materials & Structures
, Vol.
19
,
1996
, pp. 217–227.
16.
Hall
,
R. F.
and
Powell
,
B. E.
, “
The Effects of LCF Loadings on HCF Crack Growth
,” US AFOSR Annual Report for Phase II, Report Number F567,
University of Portsmouth
, England,
05
1999
.
17.
Hopkins
,
S. W.
,
Rau
,
C. A.
,
Leverant
,
G. R.
, and
Yuen
,
A.
, “
Effect of Various Programmed Overloads on the Threshold for High-Frequency Fatigue Crack Growth
,”
Fatigue Crack Growth Under Spectrum Loads
, ASTM STP 595,
American Society for Testing and Materials
,
Philadelphia
,
1976
, pp. 125–141.
18.
Petrak
,
G. J.
and
Gallagher
,
J. P.
, “
Predictions of the Effect of Yield Strength on Fatigue Crack Growth Retardation in HP-9NI-4Co-30C Steel
,”
Journal of Engineering Materials and Technology
, Vol.
97
,
1975
, pp. 206–213.
19.
Gallagher
,
J. P.
and
Stalnaker
,
H. D.
, “
Predicting Flight by Flight Crack Growth Rates
,”
Journal of Aircraft
 0021-8669, Vol.
12
,
1975
, pp. 699–705.
20.
Ritchie
,
R. O.
, “
Small Cracks and High Cycle Fatigue
,”
Proceedings of the ASME Aerospace Division
,
Chang
J. C. I.
, Ed., AMD—Vol.
52
,
ASME
,
New York, NY
,
1996
, pp. 321–333.
21.
Ritchie
,
R. O.
,
Boyce
,
B. L.
,
Campbell
,
J. P.
,
Roder
,
O.
,
Thompson
,
A. W.
, and
Milligan
,
W. W.
, “
Thresholds for High-Cycle Fatigue in a Turbine Engine Ti-6Al-4V Alloy
,”
International Journal of Fatigue
 0142-1123, Vol.
21
,
1999
, pp. 653–662.
22.
Campbell
,
J. P.
,
Thompson
,
A. W.
, and
Ritchie
,
R. O.
, “
Mixed-Mode Crack-Growth Thresholds in Ti-6AL-4V under Turbine-Engine High-Cycle Fatigue Loading Conditions
,”
4th National Turbine Engine High Cycle Fatigue Conference
,
USAF
,
Monterey, CA
,
1999
.
23.
Standard Test Method for Measurement of Fatigue Crack Growth Rates
,
Annual Book of ASTM Standards
, ASTM E 647-95a,
1995
, pp. 562–599.
24.
Kalluri
,
S.
and
Telesman
,
J.
, “
Characterization of Fatigue Crack Initiation and Propagation in Ti-6Al-4V with Electrical Potential Drop Technique
,” NASA Technical Memorandum 100877, Cleveland, OH,
07
1988
.
25.
Ghonem
,
H.
and
Rosenberger
,
A.
, “
Results from the Experimental Calibration of a DC Electrical Potential Drop System for the Measurement of Surface Flaws
,”
University of Rhode Island
, Kingston, RI, October, 1989.
26.
Mom
,
A. J. A.
and
Raizenne
,
M. D.
, “
AGARD Engine Disc Cooperative Test Programme
,” AGARD R-766,
1988
.
27.
Ravichandran
,
K. S.
and
Larsen
,
J. M.
, “
An Approach to Measure the Shapes of Three-Dimensional Surface Cracks During Fatigue Crack Growth
,”
Fatigue & Fracture of Engineering Materials and Structures
, Vol.
16
,
1993
, pp. 909–930.
28.
Ravichandran
,
K. S.
and
Larsen
,
J. M.
, “
Behavior of Small and Large Fatigue Cracks in Ti-24Al-11Nb: Effects of Crack Shape, Microstructure, and Closure
,”
Fracture Mechanics: 22nd Symposium
, ASTM STP 1131,
Ernst
H. A.
,
Saxena
A.
, and
McDowell
D. L.
, Eds.,
American Society for Testing and Materials
,
Philadelphia, PA
,
1992
, pp. 727–748.
29.
Maxwell
,
D. C.
and
Nicholas
,
T.
, “
A Rapid Method for Generation of a Haigh Diagram for High Cycle Fatigue
,”
Fatigue and Fracture Mechanics: 29th Volume
, ASTM STP 1321,
Panontin
T. L.
and
Sheppard
S. D.
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1999
, pp. 626–641.
30.
Nicholas
,
T.
and
Maxwell
,
D. C.
, “
Evolution and Effects of Damage in Ti-6Al-4V under High Cycle Fatigue
,”
Progress in Mechanical Behaviour of Materials
, Proceedings of the Eighth International Conference on the Mechanical Behaviour of Materials, ICM-8,
Ellyin
F.
and
Provan
J. W.
, Eds., Vol.
III
,
1999
, pp. 1161–1166.
31.
Bellows
,
R. S.
,
Muju
,
S.
, and
Nicholas
,
T.
, “
Validation of the Step Test Method for Generating Haigh Diagrams for Ti-6Al-4V
,”
International Journal of Fatigue
 0142-1123, Vol.
21
,
1999
, pp. 687–697.
32.
Bellows
,
R. S.
,
Bain
,
K. R.
, and
Sheldon
,
J. W.
, “
Effect of Step Testing and Notches on the Endurance Limit of Ti-6Al-4V
,”
Mechanical Behavior of Advanced Materials, MD—Vol. 84
,
Davis
D. C.
et al, Eds.,
ASME
,
New York
,
1998
, pp. 27–32.
33.
Vitovec
,
F. H.
and
Lazan
,
B. J.
, “
Strength, Damping and Elasticity of Materials Under Increasing Reversed Stress with Reference to Accelerated Fatigue Testing
,”
ASTM Proceedings
, Vol.
55
,
American Society for Testing and Materials
,
1955
, pp. 844–862.
34.
Vasserman
,
N. N.
,
Gladkovskii
,
V. A.
,
Lukyanov
,
O. P.
,
Kozlov
,
I. V.
, and
Zgogurin
,
V. V.
, “
Investigation of the Cyclic Strength of VT6 Titanium Alloy
,”
Strength of Materials
, Vol.
8
,
1976
, pp. 1288–1293.
35.
Frost
,
N. E.
, “
Notch Effects and the Critical Alternating Stress Required to Propagate a Crack in an Aluminum Alloy Subject to Fatigue Loading
,”
J. Mech. Eng. Sci.
, Vol.
2
,
1960
, pp. 109–119.
36.
Sadananda
,
K.
,
Vasudevan
,
A. K.
,
Holtz
,
R. L.
, and
Lee
,
E. U.
, “
Analysis of Overload Effects and Related Phenomena
,”
International Journal of Fatigue
 0142-1123, Vol.
21
,
1999
, pp. S233–S246.
37.
Kitagawa
,
H.
and
Takahashi
,
S.
, “
Applicability of Fracture Mechanics to Very Small Cracks or the Cracks in the Early Stage
,”
Proceedings of the Second International Conference on Mechanical Behaviour of Materials
,
Boston, MA
,
1976
, pp. 627–631.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal