Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Effects of Radiation on Materials: 18th International Symposium
By
RK Nanstad
RK Nanstad
1
Oak Ridge National Laboratory
,
Oak Ridge, Tennessee
;
Symposium Chair and Editor
Search for other works by this author on:
ML Hamilton
ML Hamilton
2
Pacific Northwest National Laboratory
,
Richland, Washington
;
Symposium Co-Chair and Editor
Search for other works by this author on:
FA Garner
FA Garner
3
Pacific Northwest National Laboratory
,
Richland, Washington
;
Symposium Co-Chair and Editor
Search for other works by this author on:
AE Kumar
AE Kumar
4
University of Missouri-Rolla
,
Rolla, Missouri
;
Symposium Co-Chair and Editor
Search for other works by this author on:
ISBN-10:
0-8031-2614-X
ISBN:
978-0-8031-2614-5
No. of Pages:
1162
Publisher:
ASTM International
Publication date:
1999

Small angle neutron scattering (SANS) results are presented for Linde 80 welds irradiated, as part of the B&W Owners Group Integrated Surveillance Program, at low fluxes (< 1015 n/m2-s) to fluences from 0.29 to 3.5x1023 n/m2 (E > 1 MeV) at irradiation temperatures from 276 to 292°C. The welds all contain about 0.6 Ni (all composition units are in wt.%), 0.009 to 0.18 P and 0.05 to 0.28 Cu. In the welds with significant amounts of copper (> 0.2 Cu) the measured defect scattering cross sections were consistent with either: a) copper rich precipitates (CRPs) alloyed with manganese and nickel; or b) dominant CRP scattering, plus a weak contribution from so-called matrix defect features. Similar weak scattering was observed in a low copper (0.06 Cu) weld. The identity of matrix defect features cannot be determined from the SANS data alone, but the scattering is consistent with the presence of subnanometer vacancy cluster-solute complexes. The general character of the CRPs, and the trends in their number density, volume fraction and average radius as a function of fluence and irradiation temperature, are very similar to those observed in a wide range of pressure vessel-type steels irradiated in test reactors at intermediate to high flux. The SANS data in the surveillance welds is also in unity with: a) thermodynamic-kinetic radiation enhanced diffusion models of CRP evolution; b) mechanical property changes, including predictions of the correlations of the surveillance data base; and c) an atomic scale, atom probe field ion microscopy study into the nanostructure-chemistry of a CRP.

1.
Odette
,
G. R.
, and
Lucas
,
G. E.
, “
Irradiation Embrittlement of Reactor Pressure Vessel Steels: Mechanisms, Models, and Data Correlation
,”
Radiation Embrittlement of Nuclear Reactor Pressure Vessel Steels: An International Review (Second Volume)
, ASTM STP 909,
Steele
L. E.
, Ed.,
1986
, pp. 206–41.
2.
Solt
,
G.
,
Frisius
,
F.
, and
Waeber
,
W. B.
, “
Defect Particles in an Irradiated RPV Steel Studied by a Systematic Variation of Irradiation and Annealing Conditions: Preliminary Results by Small Angle Neutron Scattering
,”
Radiation Embrittlement of Nuclear Reactor Pressure Vessel Steels: An International Review (Third Volume)
, ASTM STP 1011,
Steele
L. E.
, Ed.,
1989
, pp. 229–242.
3.
Beaven
,
P.A.
,
Frisius
,
F.
,
Kampmann
,
R.
,
Wagner
,
R.
, and
Hawthorne
,
J. R.
, “
SANS Investigation of Irradiated A533-B Steels Doped with Phosphorus
,”
Radiation Embrittlement of Nuclear Reactor Pressure Vessel Steels: An International Review (Third Volume)
, ASTM STP 1011,
Steele
L. E.
, Ed.,
1989
pp. 243–256.
4.
Brauer
,
G.
,
Eichhorn
,
F.
,
Frisius
,
F.
, and
Kampmann
,
R.
, “
Investigation of Neutron Irradiated Soviet-Type Reactor Pressure Vessel Steels by Small Angle Neutron Scattering
,”
Effects of Radiation on Materials: 16th International Symposium
, ASTM STP 1175,
Kumar
A. S.
,
Gelles
D. S.
,
Nanstad
R. K.
, and
Little
E. A.
, Eds.,
1993
, pp. 503–515.
5.
Frisius
,
F.
,
Kampmann
,
R.
,
Beaven
,
P. A.
, and
Wagner
,
R.
,
Dimensional Stability and Mechanical Behaviour of Irradiated Metals and Alloys — VI
,
BNES
,
London
,
1983
, p.171.
6.
Eason
,
E. D.
,
Wright
,
J. E.
, and
Odette
,
G. R.
,
Improved Embrittlement Correlations for Reactor Pressure Vessel Steels
, NUREG/CR-6551,
U. S. Nuclear Regulatory Commission
(in press).
7.
Odette
,
G. R.
, “
On the Controlling Mechanism of Radiation Embrittlement of Reactor Pressure Vessel Steels
,”
Scripta Met
, Vol.
17
,
1983
, p. 1183.
8.
Odette
,
G. R.
, “
Radiation Induced Microstructural Evolution in Reactor Pressure Vessel Steels
,”
MRS Soc. Symp. Proc.
 0272-9172, Vol.
373
,
1995
, p. 137.
9.
Odette
,
G. R.
and
Lucas
,
G. E.
, “
Recent Progress in Understanding Reactor Pressure Vessel Embrittlement
,”
Radiation Effects & Defects in Solids
, Vol.
144
,
1998
, p. 189.
10.
Odette
,
G. R.
, “
Modeling Irradiation Embrittlement in Reactor Pressure Vessel Steels
,”
Neutron Irradiation Effects in Reactor Pressure Vessel Steels and Weldments
, IAEA Technical Report Series, Vienna (to be published).
11.
Odette
,
G. R.
,
Liu
,
C.-L.
, and
Wirth
,
B. D.
, “
On the Composition and Structure of Nanoprecipitates in Irradiated Pressure Vessel Steels
,”
MRS Soc. Symp. Proc.
 0272-9172, Vol.
439
,
Robertson
I. M.
,
Was
G. S.
,
Hobbs
L. W.
,
Diaz de la Rubia
T.
,
Rehn
L. E.
, and
Zinkle
S. J.
, eds.,
Materials Research Society
,
Pittsburgh
,
1997
, p. 457.
12.
Odette
,
G. R.
,
Mader
,
E. V.
,
Lucas
,
G. E.
,
Phythian
,
W. J.
,
English
,
C. A.
, “
The Effect of Flux on Irradiation Hardening of Pressure Vessel Steels
,”
Effects of Radiation on Materials: 16th International Symposium
, ASTM STP 1175,
Kumar
A. S.
,
Gelles
D. S.
,
Nanstad
R. K.
, and
Little
E. A.
, Eds.,
1993
, p. 373.
13.
Mader
,
E.
, “
Kinetics of Irradiation Embrittlement and the Post-irradiation Annealing of Nuclear Reactor Pressure Vessel steels
,” Ph.D. Thesis,
Department of Materials, University of California
, Santa Barbara,
1995
.
14.
Odette
,
G. R.
and co-workers, unpublished results.
15.
Fint
,
J. A.
, “
A Study of the Evolution of Precipitates in Pressure Vessel Steels Using Small Angle Neutron Scattering
,” Master of Science Thesis,
Department of Chemical and Nuclear Engineering, University of California
, Santa Barbara,
1990
.
16.
Wignail
,
G.D.
and
Bates
,
F. S.
, “
Absolute Calibration of Small-Angle Neutron Scattering Data
,”
Journal of Applied Crystallography
, Vol.
20
,
1986
, pp. 28–39.
17.
Glinka
,
C. J.
,
Rowe
,
J. M.
and
laRock
,
J. G.
,
J. of Applied Crystallography
, Vol.
19
,
1986
, p. 427.
18.
Pavinich
,
W.
, unpublished results.
19.
Russell
,
K. C.
and
Brown
,
L. M.
, “
A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Iron-Copper System
,”
Acta Met
, Vol.
20
,
1972
, pp. 969–974.
20.
Odette
,
G. R.
and
Tedeski
,
G.
, unpublished results.
21.
Odette
,
G. R.
,
Lucas
,
G. E.
,
Tedeski
,
G.
and
Wirth
,
B. D.
, “
Development of Superposition Rules for Hardening in Alloys Containing Multiple Defect Populations
,”
J. Nucl. Mater.
(submitted for publication).
22.
Pareige
,
P.
and
Miller
,
M. K.
, “
Characterization of Neutron Induced Copper Enriched Clusters in Pressure Vessel Steel Weld: an APFIM Study
,”
App. Surf. Sci.
 0169-4332, Vols.
94/95
,
1996
, p. 370.
23.
Liu
,
C.-L.
,
Odette
,
G. R.
,
Wirth
,
B. D.
and
Lucas
,
G. E.
, “
A LMC Simulation of Nanophase Compositions and Structures in Irradiated Pressure Vessel Fe-Cu-Ni-Mn-Si Steels
,”
Materials Science & Engineering
, Vol.
A238
,
1997
, p. 202.
24.
Odette
,
G. R.
and
Wirth
,
B. D.
, “
A Computational Microscopy Study of Nanostructural Evolution in Irradiated Pressure Vessel Steels
,”
J. Nuc. Mat.
, Vol.
251
,
1997
, p. 157.
25.
Kostorz
,
G.
, “
Small Angle Scattering and Its Applications to Materials Science
,”
Treatise on Materials Science and Technology
, Vol.
15
.
26.
Guinier
,
A.
and
Fournet
,
G.
,
Small Angle Scattering of X-Rays
, translated by C. B. Walker,
John Wiley and Sons
,
New York
,
1955
.
27.
Barker
,
J.
and
Glinka
,
C. J.
, personal communication.
28.
Wirth
,
B. D.
and
Odette
,
G. R.
, unpublished results.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal