Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Fatigue and Fracture Mechanics: 27th Volume
By
RS Piascik
RS Piascik
1
NASA Langley Research Center
?
Hampton, VA 23681-0001
;
Symposium Chairman and Editor
Search for other works by this author on:
JC Newman, Jr Jr
JC Newman, Jr Jr
2
NASA Langley Research Center
?
Hampton, VA 23681-0001
;
Symposium Co-Chairman and Editor
Search for other works by this author on:
NE Dowling
NE Dowling
3
Virginia Polytechnic Institute and State University
?
Blacksburg, VA 24061-0219
;
Symposium Co-Chairman and Editor
Search for other works by this author on:
ISBN-10:
0-8031-2412-0
ISBN:
978-0-8031-2412-7
No. of Pages:
639
Publisher:
ASTM International
Publication date:
1997

A practical methodology is being developed to characterize elastic-plastic fatigue crack growth (EPFCG) behavior. The methodology will be implemented in engineering software for crack growth analysis and life prediction of advanced reusable aerospace propulsion systems. The correlating parameter upon which the methodology is based is the range of the J-integral, ΔJ. Existing J solutions are summarized, and robust methods for developing new J solutions under various loading configurations are introduced and validated. Some practical crack growth algorithms required to translate a J calculation into a quantitative prediction of EPFCG life are highlighted. Crack closure plays a significant role in the engineering characterization of EPFCG rates, and simple algorithms to estimate closure stresses are described. Other algorithms address the tearing-fatigue interaction near final instability and the estimation of required material properties. Early results from experimental verification tests are reported.

1.
McClung
,
R. C.
, and
Sehitoglu
,
H.
, “
Characterization of Fatigue Crack Growth in Intermediate and Large Scale Yielding
,”
ASME Journal of Engineering Materials and Technology
, Vol.
113
,
1991
, pp. 15–22.
2.
Kim
,
K. S.
, and
Orange
,
T. W.
, “
A Review of Path-Independent Integrals in Elastic-Plastic Fracture Mechanics
,”
Fracture Mechanics: Eighteenth Symposium
, ASTM STP 945,
West Conshohocken, PA
,
1988
, pp. 713–729.
3.
Lamba
,
H. S.
, “
The J-Integral Applied to Cyclic Loading
,”
Engineering Fracture Mechanics
, Vol.
7
,
1975
, pp. 693–703.
4.
Wuthrich
,
C.
, “
The Extension of the J-Integral Concept to Fatigue Cracks
,”
International Journal of Fracture
, Vol.
20
,
1982
, pp. R35–R37.
5.
Tanaka
,
K.
, “
The Cyclic J-Integral as a Criterion for Fatigue Crack Growth
,”
International Journal of Fracture
, Vol.
22
,
1983
, pp. 91–104.
6.
Kumar
,
V.
,
German
,
M. D.
, and
Shih
,
C. F.
, “
An Engineering Approach for Elastic-Plastic Fracture Analysis
,” NP-1931,
EPRI
,
Palo Alto, CA
,
1981
.
7.
Zahoor
,
A.
,
Ductile Fracture Handbook
, NP-6301-D, Vols.
1–3
,
EPRI
,
Palo Alto, CA
, 1989–1991.
8.
Ainsworth
,
R. A.
, “
The Assessment of Defects in Structures of Strain Hardening Material
,”
Engineering Fracture Mechanics
, Vol.
26
,
1987
, pp. 633–642.
9.
Milne
,
I.
,
Ainsworth
,
R. A.
,
Dowling
,
A. R.
, and
Stewart
,
A. T.
, “
Assessment of the Integrity of Structures Containing Defects
,” CEGB Report R/H/R6-Revision 3,
CEGB, Sudbury House
, London,
1986
.
10.
Miller
,
A. G.
, “
Review of Limit Loads of Structures Containing Defects
,”
International Journal of Pressure Vessels and Piping
 0308-0161, Vol.
32
,
1988
, pp. 197–327.
11.
Chell
,
G. G.
,
Kuhlman
,
C. J.
,
Millwater
,
H. R.
, and
Riha
,
D. S.
, “
Application of Reference Stress and Probabilistic Methodologies to Assessing Creep Crack Growth
,”
Elevated Temperature Effects on Fatigue and Fracture
, ASTM STP 1297,
Piascik
R. S.
,
Saxena
A.
, and
Gangloff
R. P.
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1996
.
12.
Sharobeam
,
M.
, and
Landes
,
J. L.
, “
A Simplified Approach for J-Integral Evaluation for Semi-Elliptical Surface Cracks
,”
Fracture Mechanics: 25th Volume
, ASTM STP 1220,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1995
.
13.
Chell
,
G. G.
, and
McClung
,
R. C.
, “
An Approximate Method for Deriving J Solutions for Two Simultaneously Applied Mechanical Loads from J Solutions for the Two Loads Acting Separately
,” Topical Report, Contract NAS8-37828, NASA-Marshall, December 1993, to be submitted for publication.
14.
Kumar
,
V.
,
German
,
M. D.
,
Wilkening
,
W. W.
,
Andrews
,
W. R.
,
deLorenzi
,
H. G.
, and
Mowbray
,
D. F.
, “
Advances in Elastic-Plastic Fracture Analysis
,” EPRI Report NP-3607,
EPRI
, Palo Alto, CA,
08
1984
.
15.
Kumar
,
V.
, and
German
,
M. D.
, “
Elastic-Plastic Fracture Analysis of Through Wall and Surface Flaws in Cylinders
,” EPRI Report NP-5596,
EPRI
, Palo Alto, CA,
01
1988
.
16.
Chell
,
G. G.
, “
A J Estimation Scheme for Combined Mechanical, Thermal, and Residual Stresses
,”
International Journal of Pressure Vessels and Piping
 0308-0161, Vol.
23
,
1986
, pp. 187–213.
17.
Budden
,
P. J.
, “
Fracture Assessment of Combined Thermal and Mechanical Loads Using Uncracked Body Stress Analysis
,” CEGB Report RD/B/6158/R89,
Berkeley Nuclear Laboratories
, Berkeley, England,
1989
.
18.
Chell
,
G. G.
, and
McClung
,
R. C.
, “
J Estimation Procedures for Combined Primary and Secondary Loads, and Defects at Geometric Discontinuities
,” Topical Report, Contract NAS837828, NASA-Marshall,
09
1993
, to be submitted for publication.
19.
He
,
M. Y.
, and
Hutchinson
,
J. W.
, “
The Penny-Shaped Crack and the Plane Strain Crack in an Infinite Body of Power-Law Material
,”
ASME Journal of Applied Mechanics
, Vol.
48
,
1981
, pp. 830–840.
20.
Dowling
,
N. E.
, “
J-Integral Estimates for Cracks in Infinite Bodies
,”
Engineering Fracture Mechanics
, Vol.
26
,
1987
, pp. 333–348.
21.
He
,
M.
, “
Through-the-Thickness Crack in Biaxial Stress Field
,”
Institute of Scientific and Technical Information of China
, Technical Report C 000039, Beijing,
1986
(available NTIS).
See also
Proceedings
, ICF International Symposium on Fracture Mechanics (
Beijing
),
Science Press
,
Beijing, China
,
1983
, pp. 42–49.
22.
Jansson
,
S.
, “
Fully Plastic Plane Stress Solutions for Biaxially Loaded Center-Cracked Plates
,”
ASME Journal of Applied Mechanics
, Vol.
53
,
1986
, pp. 555–560.
23.
Kubo
,
S.
,
Yafuso
,
T.
,
Nohara
,
M.
,
Ishimaru
,
T.
, and
Ohji
,
K.
, “
Investigation on Path-Integral Expression of the J-Integral Range Using Numerical Simulations of Fatigue Crack Growth
,”
JSME International Journal
, Series I, Vol.
32
,
1989
, pp. 237–244.
24.
Newman
,
J. C.
, Jr.
, “
A Crack Opening Stress Equation for Fatigue Crack Growth
,”
International Journal of Fracture
, Vol.
24
,
1984
, pp. R131–R135.
25.
Newman
,
J. C.
, Jr.
, “
A Crack-Closure Model for Predicting Fatigue Crack Growth Under Aircraft Spectrum Loading
,”
Methods and Models for Predicting Fatigue Crack Growth Under Random Loading
, ASTM STP 748,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1981
, pp. 53–84.
26.
McClung
,
R. C.
, “
Finite Element Analysis of Specimen Geometry Effects on Fatigue Crack Closure
,”
Fatigue and Fracture of Engineering Materials and Structures
, Vol.
17
,
1994
, pp. 861–872.
27.
McClung
,
R. C.
, “
Finite Element Modeling of Fatigue Crack Growth
,”
Theoretical Concepts and Numerical Analysis of Fatigue
,
EMAS
,
1992
, pp. 153–172.
28.
McClung
,
R. C.
, “
A Simple Model for Fatigue Crack Growth Near Stress Concentrations
,”
ASME Journal of Pressure Vessel Technology
, Vol.
113
,
1991
, pp. 542–548.
29.
Kaiser
,
S.
, “
On the Relation Between Stable Crack Growth and Fatigue
,”
Fatigue of Engineering Materials and Structures
, Vol.
6
,
1983
, pp. 33–49.
30.
Nix
,
K. J.
,
Knee
,
N.
,
Lindley
,
T. C.
, and
Chell
,
G. G.
, “
An Investigation of Fatigue Crack Growth in a Ductile Material at High Growth Rates
,”
Fatigue and Fracture of Engineering Materials and Structures
, Vol.
11
,
1988
, pp. 205–220.
31.
Orange
,
T. W.
, “
Method and Models for R-Curve Instability Calculations
,”
Fracture Mechanics: Twenty-First Symposium
, ASTM STP 1074,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1990
, pp. 545–559.
32.
McClung
,
R. C.
,
Hudak
,
S. J.
, Jr.
,
Bartlett
,
M. L.
, and
FitzGerald
,
J. H.
, “
Growth of Surface Cracks During Large Elastic-Plastic Loading Cycles
,”
Fracture Mechanics: Twenty-Third Symposium
, ASTM STP 1189,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1993
, pp. 265–283.
33.
Dowling
,
N. E.
, “
Geometry Effects and the J-Integral Approach to Elastic-Plastic Fatigue Crack Growth
,”
Cracks and Fracture (Ninth Conference)
, ASTM STP 601,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1976
, pp. 19–32.
34.
Bannantine
,
J. A.
,
Comer
,
J. J.
, and
Handrock
,
J. L.
,
Fundamentals of Metal Fatigue Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
,
1990
.
35.
McClung
,
R. C.
,
Hudak
,
S. J.
, Jr.
,
Bartlett
,
M. L.
, and
FitzGerald
,
J. H.
, “
Growth of Surface Cracks During Large Elastic-Plastic Loading Cycles
,”
Fracture Mechanics: Twenty-Third Symposium
, ASTM STP 1189,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1993
, pp. 265–283.
36.
McClung
,
R. C.
, and
Hudak
,
S. J.
, Jr.
, “
Surface Crack Growth in Inconel 718 During Large Unload-Reload Cycles
,”
Fracture Mechanics: Twenty-Fourth Volume
, ASTM STP 1207,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1994
, pp. 706–721.
37.
Kim
,
K. S.
,
Van Stone
,
R. H.
,
Malik
,
S. N.
, and
Laflen
,
J. H.
, “
Elevated Temperature Crack Growth
,”
NASA
CR-182247,
11
1988
, and
NASA
CR-189191,
12
1992
.
38.
Meyers
,
G. J.
, “
Fracture Mechanics Criteria for Turbine Engine Hot Section Components
,”
NASA
CR-167896,
1982
.
39.
Forman
,
R. G.
,
Shivakumar
,
V.
,
Newman
,
J. C.
, Jr.
,
Piotrowski
,
S. M.
, and
Williams
,
L. C.
, “
Development of the NASA/FLAGRO Computer Program
,”
Fracture Mechanics: Eighteenth Symposium
, ASTM STP 945,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1988
, pp. 781–803.
40.
Forman
,
R. G.
,
Shivakumar
,
V.
, and
Newman
,
J. C.
, Jr.
, “
Development of the NASA/FLAGRO Computer Program for Analysis of Airframe Structures
,”
FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance
, NASA CP 3274,
1994
, Part I, pp. 277–288.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal