Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Life Prediction Methodology for Titanium Matrix Composites
By
S Johnson
S Johnson
1
Georgia Institute of Technology
?
Atlanta, GA 30320 Cochairman and Coeditor
Search for other works by this author on:
J Larsen
J Larsen
2
USAF Wright Laboratory
?
Wright Patterson AFB, OH 45433 Cochairman and Coeditor
Search for other works by this author on:
B Cox
B Cox
3
Rockwell International Science Center
?
Thousand Oaks, CA 91364 Cochairman and Coeditor
Search for other works by this author on:
ISBN-10:
0-8031-2039-7
ISBN:
978-0-8031-2039-6
No. of Pages:
634
Publisher:
ASTM International
Publication date:
1996

Results are presented for Ti-6Al-4V containing silicon carbide (SiC) monofil-aments having duplex (carbon plus TiB2) coatings. Single fiber pushout testing has been used to study the debonding and frictional sliding characteristics under shear loading, with and without the residual radial compressive stress being reduced by applied in-plane tension. It is shown by finite element method (FEM) modeling that it is important to take account of thermal residual stresses when interpreting data from these tests. Prior heat treatments causing interfacial reaction tend to raise the resistance of the interface to debonding and sliding. This is correlated with data from tension testing of composites under axial and transverse loading, with continuous Poisson's ratio monitoring. The behavior under transverse loading is particularly sensitive to the mechanical response of the interface. The presence of interfacial reaction layers tends to inhibit the development of interfacial debonding and void formation under transverse loading, but causes embrittlement and leads to a reduced strain to failure.

The behavior under transverse load has also been studied with superimposed thermal cycling between 400 and 700⪤gC. Strain histories have been monitored using scanning laser extensometry. Under these conditions, thermal stresses have a pronounced influence on the behavior. Many of the steady-state creep characteristics can be successfully modeled on the basis of matrix creep being controlled by volume-averaged stresses (predicted using the Eshelby method), with stress relaxation processes simulated via a variable stress-free temperature. However, the behavior tends to be influenced from a relatively early stage by interfacial damage development. Interfacial debonding and damage, promoted by a combination of opening mode stress from the applied load and shear stress from differential thermal contraction (particularly towards the specimen edges), soon starts to influence the strain history and has a strong influence on the rupture strain. In sharp contrast to the room temperature behavior, the heavily reacted specimens exhibited delayed onset of interfacial damage and a much longer lifetime, although the final strains to failure were similar. These results are considered in terms of stress fields and interfacial properties.

1.
Wright
,
P. K.
,
Nimmer
,
R.
,
Smith
,
G.
,
Sensmeier
,
M.
, and
Brun
,
M.
, “
The Influence of the Interface on Mechanical Behaviour of Ti-6Al-4V/SCS6 Composites
,”
Interfaces in Metal-Ceramic Composites
,
Lin
R. Y.
,
Arsenault
R. J.
,
Martins
G. P.
, and
Fishman
S. G.
, Eds.,
The Metals Society
,
Warrendale, PA
,
1990
, pp. 559–581.
2.
Jansson
,
S.
,
Deve
,
H. E.
, and
Evans
,
A. G.
, “
The Anisotropic Mechanical Properties of a Ti Matrix Composite Reinforced with SiC Fibres
,”
Metallurgical Transactions
, Vol.
22A
,
1991
, pp. 2975–2984.
3.
Jeng
,
S. M.
,
Yang
,
J.-M.
, and
Yang
,
C. J.
, “
Fracture Mechanisms of Fibre-reinforced Titanium Alloy Matrix Composites. Part II: Tensile Behaviour
,”
Materials Science and Engineering
, Vol.
A138
,
1991
, pp. 169–180.
4.
Jeng
,
S. M.
,
Yang
,
J.-M.
, and
Yang
,
C. J.
, “
Fracture Mechanisms of Fibre-reinforced Titanium Alloy Matrix Composites. Part III: Toughening Behaviour
,”
Materials Science and Engineering
, Vol.
A138
,
1991
, pp. 181–190.
5.
Majumdar
,
B. S.
and
Newaz
,
G. M.
, “
Inelastic Deformation of Metal Matrix Composites: Plasticity and Damage Mechanisms
,”
Philosophical Magazine
 0031-8086, Vol.
66
,
1992
, pp. 187–212.
6.
Majumdar
,
B. S.
,
Newaz
,
G. M.
, and
Ellis
,
J. R.
, “
Evolution of Damage and Plasticity in Titanium-Based, Fibre-Reinforced Composites
,”
Metallurgical Transactions
, Vol.
24A
,
1993
, pp. 1597–1610.
7.
Watson
,
M. C.
and
Clyne
,
T. W.
, “
Reaction-induced Changes in Interfacial and Macroscopic Mechanical Properties of SiC Monofilament Reinforced Titanium
,”
Composites
 0958-9465, Vol.
24
,
1993
, pp. 222–228.
8.
Gunawardena
,
S. R.
,
Jansson
,
S.
, and
Leckie
,
F. A.
, “
Modeling of Anisotropic Behavior of Weakly Bonded Fibre Reinforced MMC's
,”
Acta Metallurgical Materials
, Vol.
41
,
1993
, pp. 3147–3156.
9.
Bonora
,
N.
,
Costanzi
,
M.
,
Newaz
,
G.
, and
Marchetti
,
M.
, “
Micro Damage Effects on the Overall Response of Long Fibre Metal Matrix Composites
,”
Composites
 0958-9465, Vol.
25
,
1994
, pp. 575–582.
10.
Fox
,
K. M.
,
Strangwood
,
M.
, and
Bowen
,
P.
, “
The Influence of Thermal Treatments on Interfacial Properties and Fatigue Crack Growth Resistance in SCS-6/Ti/321S Composites
,”
Composites
 0958-9465, Vol.
25
,
1994
, pp. 684–691.
11.
Jeng
,
S. M.
,
Yang
,
J.-M.
, and
Yang
,
C. J.
, “
Fracture Mechanisms of Fibre-reinforced Titanium Alloy Matrix Composites. Part I: Interfacial Behaviour
,”
Materials Science and Engineering
, Vol.
A138
,
1991
, pp. 155–167.
12.
Marshall
,
D. B.
, “
An Indentation Method for Measuring Matrix-fibre Frictional Stresses in Ceramic Composites
,”
Journal, American Ceramics Society
 0002-7820, Vol.
67
,
1984
, pp. C259–260.
13.
Marshall
,
D. B.
and
Oliver
,
W. C.
, “
Measurement of Interfacial Mechanical Properties in Fibre-reinforced Ceramic Composites
,”
Journal, American Ceramics Society
 0002-7820, Vol.
70
,
1987
, pp. 542–548.
14.
Weihs
,
T. P.
and
Nix
,
W. D.
, “
In situ Measurements of the Mechanical Properties of Fibres, Matrices and Interfaces in Metal Matrix and Ceramic Matrix Composites
,”
Metallic and Ceramic Composites
,
Andersen
S. I.
,
Lilholt
H.
, and
Pedersen
O. B.
, Eds.,
Riso National Laboratory
,
Roskilde, Denmark
,
1988
, pp. 497–502.
15.
Shetty
,
D. K.
, “
Shear Lag Analysis of Fibre Push-out (Indentation) Tests for Estimating Interfacial Friction Stress in Ceramic-Matrix Composites
,”
Journal, American Ceramics Society
 0002-7820, Vol.
71
,
1988
, pp. C107–109.
16.
Hsueh
,
C. H.
,
Bright
,
J. D.
, and
Shetty
,
D. K.
, “
Interfacial Properties of SiC-Borosilicate Glass Composites Evaluated from Pushout and Pullout Tests
,”
Journal of Materials Science Letters
 0001-4273, Vol.
10
,
1991
, pp. 135–138.
17.
Singh
,
R. N.
and
Sutcu
,
M.
, “
Determination of Fibre-Matrix Interfacial Properties in Ceramic Matrix Composites by a Fibre Push-out Technique
,”
Journal of Materials Science
, Vol.
26
,
1991
, pp. 2547–2556.
18.
Watson
,
M. C.
and
Clyne
,
T. W.
, “
The Use of Single Fibre Pushout Testing to Explore Interfacial Mechanics in SiC Monofilament-reinforced Ti. Part I: A Photoelastic Study of the Test
,”
Acta Metal et Materials
, Vol.
40
,
1992
, pp. 135–140.
19.
Eldridge
,
J. I.
and
Brindley
,
P. K.
, “
Investigation of Interfacial Shear Strength in a SiC Fibre/Ti-24Al-llNb Composite by a Fibre Push-out Technique
,”
Journal of Materials Science Letters
, Vol.
8
,
1989
, pp. 1451–1454.
20.
Yang
,
C. J.
,
Jeng
,
S. M.
, and
Yang
,
J. M.
, “
Interfacial Properties Measurement for SiC Fibre-reinforced Titanium Alloy Composites
,”
Scripta Metallurgica et Materials
, Vol.
24
,
1990
, pp. 469–474.
21.
Watson
,
M. C.
and
Clyne
,
T. W.
, “
The Use of Single Fibre Pushout Testing to Explore Interfacial Mechanics in SiC Monofilament-reinforced Ti. Part II: Application of the Test to Composite Material
,”
Acta Metal et Materials
, Vol.
40
,
1992
, pp. 141–148.
22.
Kallas
,
M. N.
,
Koss
,
D. A.
,
Hahn
,
H. T.
, and
Hellman
,
J. R.
, “
Interfacial Stress State Present in a ‘Thin Slice≿ Fibre Push-out Test
,”
Journal of Materials Science
, Vol.
27
,
1992
, pp. 3821–3826.
23.
Koss
,
D. A.
,
Kallas
,
M. N.
, and
Hellman
,
J. R.
, “
Mechanics of Interfacial Failure During Thin Slice Fibre Pushout Tests
,”
Proceedings, Materials Research Society
, Vol.
273
,
1992
, pp. 303–313.
24.
Kalton
,
A. F.
,
Ward-Close
,
C. M.
, and
Clyne
,
T. W.
, “
Development of the Tensioned Pushout Test for Study of Fibre-matrix Interfaces
,”
Composites
 0958-9465, Vol.
25
,
1994
, pp. 637–639.
25.
Watson
,
M. C.
and
Clyne
,
T. W.
, “
The Tensioned Push-Out Test for Measurement of Fibre/ Matrix Interfacial Toughness under Mixed Mode Loading
,”
Materials Science and Engineering
, Vol.
A160
,
1993
, pp. 1–5.
26.
Khobaib
,
M.
, “
Creep Behaviour of SCS-6/Ti-24Al-11Nb Metal Matrix Composites
,”
Titanium Aluminide Matrix Composites
,
Smith
P. R.
,
Balstone
S. J.
, and
Nicholas
T.
, Eds.,
Wright-Patterson Air Force Base
,
Dayton, OH
,
1991
, pp. 450–461.
27.
Clyne
,
T. W.
and
Withers
,
P. J.
,
An Introduction to Metal Matrix Composites
,
Cambridge University Press
,
Cambridge, UK
,
1993
.
28.
Gordon
,
F. H.
and
Clyne
,
T. W.
, “
The Effects of Texture and Microstructure on the Thermal Cycling Creep of Ti-6A1-4V with and without Fibre Reinforcement
,”
Proceedings
, 9th International Conference on Composite Materials (ICCM9),
Miravete
A.
, Ed.,
Elsevier
, Vol.
1
,
1993
, pp. 524–532.
29.
Gordon
,
F. H.
and
Clyne
,
T. W.
, “
Thermal Cycling Creep of Ti-6Al-4V/SiC Monofilament Composites Under Transverse Loading
,”
Residual Stresses in Composites: Modeling, Measurement and Effects on Thermomechanical Properties
,
Barrera
E. V.
and
Dutta
I.
, Eds.,
The Metals Society
,
Warrendale, PA
,
1993
, pp. 293–304.
30.
Colclough
,
A.
,
Dempster
,
B.
,
Favry
,
Y.
, and
Valentin
,
D.
, “
Thermomechanical Behaviour of SiC-Al Composites
,”
Materials Science & Engineering
, Vol.
A135
,
1991
, pp. 203–207.
31.
Hartley
,
M. V.
, “
The Effect of Isothermal Exposure on the Mechanical Properties of a Continuous Fibre Reinforced Titanium Matrix Composite
,”
Proceedings
, Ninth RisØ International Symposium on Mechanical and Physical Behaviour of Metallic and Ceramic Composites,
Andersen
S. I.
,
Lilholt
H.
, and
Pedersen
O. B.
, Eds.,
RisØ National Laboratory
,
Roskilde, Denmark
,
1988
, pp. 383–390.
32.
Watson
,
M. C.
and
Clyne
,
T. W.
, “
Interfacial Mechanical Properties in Ti-SiC Monofilament Composites from Single Fibre Pushout Testing
,”
Interfacial Phenomena in Composite Materials
,
91
,
Verpoest
I.
and
Jones
F. R.
, Eds.,
Butterworths
,
London
,
1991
, pp. 187–190.
33.
Brown
,
K. M.
,
Hendricks
,
R. W.
, and
Brewer
,
W. D.
, “
X-Ray Diffraction Measurements of Residual Stresses in SiC/Ti Composites
,”
Fundamental Relationships Between Microstructures and Mechanical Properties of Metal-Matrix Composites
,
Liaw
P. K.
and
Gungor
M. N.
, Eds.,
The Metals Society
,
Warrendale, PA
,
1990
, pp. 269–286.
34.
Clyne
,
T. W.
, “
A Compressibility-based Derivation of Simple Expressions for the Transverse Poisson's Ratio and Shear Modulus of an Aligned Long Fibre Composite
,”
Journal of Materials Science Letters
, Vol.
9
,
1990
, pp. 336–339.
35.
Furness
,
J. A. G.
and
Clyne
,
T. W.
, “
The Application of Scanning Laser Extensometry to Explore Thermal Cycling Creep of Metal Matrix Composites
,”
Materials Science & Engineering
, Vol.
A141
,
1991
, pp. 199–207.
36.
Dragone
,
T. L.
and
Nix
,
W. D.
, “
A Numerical Study of High Temperature Creep Deformation in Metal-Matrix Composites
,”
Metal & Ceramic Matrix Composites: Processing, Modeling & Mechanical Behaviour
,
Bhagat
R. B.
,
Clauer
A. H.
,
Kumar
P.
, and
Ritter
A. M.
, Eds.,
The Minerals, Metals & Materials Society
,
Warrendale, PA
,
1990
, pp. 367–380.
37.
Dragone
,
T. L.
and
Nix
,
W. D.
, “
Steady State and Transient Creep Properties of an Aluminum Alloy Reinforced with Alumina Fibres
,”
Acta Metallurgica
, Vol.
40
,
1992
, pp. 2781–2791.
38.
Partridge
,
P. G.
,
McDarmaid
,
D. S.
, and
Bowen
,
A. W.
, “
A Deformation Model for Anisotropic Superplasticity in Two-phase Alloys
,”
Acta Metallurgica
, Vol.
33
,
1985
, pp. 571–577.
39.
Bowen
,
A. W.
,
McDarmaid
,
D. S.
, and
Partridge
,
P. G.
, “
Effect of High Temperature Deformation on the Texture of a Two-phase Titanium Alloy
,”
Journal of Materials Science
, Vol.
26
,
1991
, pp. 3457–3462.
40.
Dvorak
,
G. J.
,
Bahei-El-Din
,
Y. A.
,
Macheret
,
Y.
, and
Liu
,
C. H.
, “
An Experimental Study of Elastic-Plastic Behaviour of a Fibrous Boron-Aluminium Composite
,”
Journal of the Mechanics and Physics of Solids
, Vol.
36
,
1988
, pp. 655–687.
41.
Dvorak
,
G. J.
, “
Micromechanics of Inelastic Composite Materials: Theory and Experiment
,”
Journal of Engineering Materials and Technology
, Vol.
115
,
1993
, pp. 327–338.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal