Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Case Studies for Fatigue EducationAvailable to Purchase
By
RI Stephens
RI Stephens
1Mechanical Engineering Department
The University of Iowa
,
Iowa City, IA 52242
;
symposium chairperson and STP editor
.
Search for other works by this author on:
ISBN-10:
0-8031-1997-6
ISBN:
978-0-8031-1997-0
No. of Pages:
226
Publisher:
ASTM International
Publication date:
1994

Wind turbines are fatigue-critical machines used to produce electrical energy from the wind. These rotating machines are subjected to combinations of wind, gravity, and gyroscopic loadings that are highly irregular in nature. Historical examples of fatigue problems in both research and commercial wind-turbine development are presented. Some example data on wind-turbine environments, loadings, and material properties are also shown. Before a description of how the authors have chosen to attack the cumulative damage assessment, questions are presented for the reader's reflection. The solution technique used by the authors to define the loading spectrum for wind turbines is then presented. Special emphasis is placed on the development of a loading spectrum for use in the fatigue analysis. Less attention is paid to methods of cumulative damage assessment; Miner's rule and constant amplitude S-n data are used. A case study then applies the procedures to an actual wind-turbine blade joint. The wind turbine is the 34-m diameter vertical axis wind turbine (VAWT) erected by Sandia National Laboratories near Bushland, TX. The case study examines parameter sensitivities for realistic uncertainties in inputs defining the turbine environment, stress response, and material properties. The fatigue lifetimes are calculated using a fatigue analysis program, called LIFE2, which was developed at Sandia.

The LIFE2 code, described in some detail in the Appendix, is a PC-based, menu-driven package that leads the user through the steps required to characterize the loading and material properties, then uses Miner's rule or a linear-crack propagation rule to numerically calculate the time to failure. Only S-n based cumulative damage applications are illustrated here. The LIFE2 code is available to educational institutions for use as a case study in describing complicated loading histories and for use by students in examining, hands on, parameter sensitivity of fatigue life analysis

1.
Phillips
,
J. A.
, “
Wind Power's Coining of Age
,”
The Electricity Journal
 1040-6190, Vol.
5
, No.
3
04
1992
, pp. 22–32.
2.
Annual Energy Outlook
,
1993
with Projections to 2010, DOE/EIA-0383(93),
Energy Information Administrations
,
01
1993
.
3.
A Growth Market in Wind Power
,”
EPRI Journal
 0362-3416, Vol.
17
, No.
8
,
12
1992
, pp. 4–15.
4.
Coleman
,
C.
and
McNiff
,
B.
, Final Report:
Dynamic Response Testing of the Northwind 100 Wind Turbine
, Subcontractor Report, SERI Cooperative Research Agreement DE-FC02-86CH10311,
Solar Energy Research Institute
, Golden CO,
12
1989
.
5.
Ashwill
,
T. D.
,
Berg
,
D. E.
,
Gallo
,
L. R.
,
Grover
,
R. D.
,
Klimas
,
P. C.
,
Ralph
,
M. E.
,
Rumsey
,
M. A.
,
Stephenson
,
W. A.
, and
Sutherland
,
H. J.
, “
The Sandia 34-Meter VAWT Test Bed
,” in
Proceedings of WindPower '87
, SERI/CP-217-3315,
American Wind Energy Association (AWEA)
,
Washington, D.C.
,
1987
, pp. 298–308.
6.
Sutherland
,
H. J.
and
Schluter
,
L. L.
, “
The LIFE2 Computer Code, Numerical Formulation and Input Parameters
,” in
Proceedings of WindPower '89
, SERI/TP-257-3628,
American Wind Energy Association
,
Washington, D.C.
,
1989
, pp. 37–42.
7.
Schluter
,
L. L.
and
Sutherland
,
H. J.
,
Reference Manual for the LIFE2 Computer Code
, SAND89-1396,
Sandia National Laboratories
,
Albuquerque, NM
,
09
1989
.
8.
Sutherland
,
H. J.
,
Analytical Framework for the LIFE2 Computer Code
, SAND89-1397,
Sandia National Laboratories
,
Albuquerque, NM
,
09
1989
.
9.
Schluter
,
L. L.
and
Sutherland
,
H. J.
, “
Rainflow Counting Algorithm for the LIFE2 Fatigue Analysis Code
,” in
Ninth ASME Wind Energy Symposium
, SED-Vol
9
,
Berg
D. E.
, Ed.,
American Society of Mechanical Engineers (ASME)
,
New York
,
1990
, pp. 121–123.
10.
Schluter
,
L. L.
and
Sutherland
,
H. J.
,
User's Guide for LIFE2's Rainflow Counting Algorithm
, SAND90-2259,
Sandia National Laboratories
,
Albuquerque, NM
,
01
1991
.
11.
Schluter
,
L. L.
,
Programmer's Guide for LIFE2's Rainflow Counting Algorithm
, SAND90-2260,
Sandia National Laboratories
,
Albuquerque, NM
,
01
1991
.
12.
Ashwill
,
T. D.
, “
Initial Structural Response Measurements for the Sandia 34-Meter VAWT Test Bed
,” in
Eighth ASME Wind Energy Symposium
, SED-Vol.
7
,
Berg
D. E.
and
Klimas
P. C.
, Eds.,
American Society of Mechanical Engineers (ASME)
,
New York
,
1989
, pp. 285–292.
13.
Van Den Avyle
,
J. A.
and
Sutherland
,
H. J.
, “
Fatigue Characterization of a VAWT Blade Material
,” in
Eighth ASME Wind Energy Symposium
, SED-Vol.
7
,
Berg
D. E.
and
Klimas
P. C.
, Eds.,
American Society of Mechanical Engineers (ASME)
,
New York
,
1989
, pp. 125–129.
14.
Mandell
,
J. F.
,
Reed
,
R. M.
,
Samborsky
,
D. D.
, and
Qiong
,
P.
, “
Fatigue Performance of Wind Turbine Blade Composite Materials
,” SED-Vol.
14
, in
Wind Energy—1993
,
Hock
S.
, Ed.,
ASME
,
New York
,
1993
, pp. 191–198.
15.
Downing
,
S. D.
and
Socie
,
D. F.
, “
Simple Rainflow Counting Algorithms
,”
International Journal of Fatigue
 0142-1123, Vol.
4
, No.
1
,
1982
, pp. 31–40.
16.
Osgood
,
C. C.
,
Fatigue Design
, 2nd Edition,
Pergamon
,
Oxford
,
1982
.
17.
Barchet
,
W. R.
, “
Wind Energy Data Base
,” in
Proceedings of the Fifth Biennial Wind Energy Conference and Workshop II
, SERI/CP-635-1340,
Solar Energy Research Institute
,
Golden, CO
,
1981
.
18.
Malcolm
,
D. J.
, “
Prediction of Peak Fatigue Stresses in a Darrieus Rotor Wind Turine under Turbulent Winds
,” in
Ninth ASME Wind Energy Symposium
, SED-Vol
9
,
ASME
,
1990
, pp. 125–136.
19.
Veers
,
P. S.
, “
Simplified Fatigue Damage and Crack Growth Calculations for Wind Turbines
,” in
Eighth ASME Wind Energy Symposium
, SED-Vol.
7
,
Berg
D. E.
and
Klimas
P. C.
, Eds.,
ASME
,
New York
,
1989
, pp. 133–140.
20.
Veers
,
P.S.
,
A General Method for Fatigue Analysis of Vertical Axis Wind Turbine Blades
, SAND89-2543,
Sandia National Laboratories
,
Albuquerque, NM
,
1983
.
21.
Ashwill
,
T. D.
,
Sutherland
,
H. J.
, and
Veers
,
P. S.
, “
Fatigue Analysis of the Sandia 34-Meter Vertical Axis Wind Turbine
,” in
Ninth ASME Wind Energy Symposium
, SED-Vol.
9
,
ASME
,
New York
,
1990
, pp. 145–151.
22.
Ashwill
,
T. D.
and
Veers
,
P. S.
, “
Structural Response Measurements and Predictions for the Sandia 34-Meter Test Bed
,” in
Ninth ASME Wind Energy Symposium
, SED-Vol.
9
,
ASME
,
New York
,
1990
, pp. 137–144.
23.
Selected Papers on Wind Energy Technology
, January 1989–January 1990,
Veers
P. S.
, Ed., SAND90-1615,
Sandia National Laboratories
,
Albuquerque, NM
,
1990
.
24.
Elliott
,
D. L.
,
Holladay
,
C. G.
,
Barchet
,
W. R.
,
Foote
,
H. P.
, and
Sandusky
,
W. F.
, “
Wind Energy Resource Atlas of the United States
,” DOE/CH10093-4, DE86004442,
Pacific Northwest Laboratory
,
03
1987
.
25.
Sutherland
,
H. J.
,
Ashwill
,
T. D.
, and
Slack
,
N.
, “
The LIFE Computer Code: Fatigue Life Prediction for Vertical Axis Wind Turbine Components
,” SAND87-0792,
Sandia National Laboratories
,
Albuquerque, NM
,
1987
.
26.
Mitchell
,
M. R.
, “
Fundamentals of Modern Fatigue Analysis
,” in
Fatigue and Microstructure
,
American Society for Metals
,
Metals Park, OH
,
1979
, pp. 385–437.
27.
Lobitz
,
D. W.
and
Sullivan
,
W. N.
,
Comparison of Finite Element Predictions and Experimental Data for the Forced Response of the DOE 100 kW Vertical Axis Wind Turbine
, SAND82-2534,
Sandia National Laboratories
,
Albuquerque, NM
,
1984
.
28.
Sutherland
,
H. J.
and
Stephenson
,
W. A.
,
Rotor Instrumentation Circuits for the Sandia 34-Meter Vertical Axis Wind Turbine
, SAND88-1144,
Sandia National Laboratories
,
Albuquerque, NM
,
1988
.
29.
Crandall
,
S. H.
and
Mark
,
W. D.
,
Random Vibration in Mechanical Systems
,
Academic Press
,
New York, NY
,
1963
.
30.
Ralph
,
M. E.
, “
Control of the Variable Speed Generator on the Sandia 34-Metre Vertical Axis Wind Turbine
,” in
Proceedings of WindPower '89
, SERI/TP-257-3628,
Solar Energy Research Institute
,
Golden, CO
,
09
1989
, pp. 99–104.
31.
Veers
,
P. S.
,
Sutherland
,
H. J.
, and
Ashwill
,
T. D.
, “
Fatigue Life Variability and Reliability Analysis of a Wind Turbine Blade
,”
Probabilistic Mechanics and Structural and Geotechnical Reliability
,
Lin
Y. K.
, Ed., ASCE,
American Society of Civil Engineers
,
New York
,
07
1992
, pp. 424–427.
32.
Sutherland
,
H. J.
and
Osgood
,
R. M.
, “
Frequency-Domain Synthesis of the Fatigue Load Spectrum for the NPS 100-kW Wind Turbine
,” in
Proceedings of Wind Power '92
,
American Wind Energy Association, (AWEA)
,
Washington, DC
,
10
1992
, pp. 321–328.
33.
Sutherland
,
H. J.
, “
Effect of the Flap and Edgewise Bending Moment Phase Relationships on the Fatigue Loads of a Typical HAWT
,” in
Wind Energy—1993
, SED-Vol.
14
,
Hock
S.
, Ed.,
ASME
,
New York
,
1993
, pp. 181–187.
34.
Dohrmann
,
C. R.
and
Veers
,
P. S.
, “
Time Domain Structural Response Calculations for Vertical Axis Wind Turbines
,” in
Eighth ASME Wind Energy Symposium
, SED-Vol
7
,
Berg
D. E.
and
Klimas
P. C.
, Eds.,
ASME
,
New York
,
1989
, pp. 107–114.
35.
Wright
,
A. D.
,
Buhl
,
M. L.
, And
Thresher
,
R. W.
,
FLAP Code Development and Validation
, SERI/TR-217-3125,
Solar Energy Research Institute
,
Golden, CO
,
1988
.
This content is only available via PDF.
You do not currently have access to this chapter.

or Create an Account

Close Modal
Close Modal