Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Life Prediction Methodologies and Data for Ceramic Materials
By
CR Brinkman
CR Brinkman
1
Martin Marietta Energy Systems
;
Oak Ridge, TN 37831-6154
;
symposium chairman and editor
.
Search for other works by this author on:
SF Duffy
SF Duffy
2
Cleveland State University
,
Cleveland, OH 44115
;
symposium chairman and editor
.
Search for other works by this author on:
ISBN-10:
0-8031-1864-3
ISBN:
978-0-8031-1864-5
No. of Pages:
426
Publisher:
ASTM International
Publication date:
1994

The main objective of this research is to develop experimental and analytical methodologies to predict the lifetimes for internally pressurized SiC tubes from the lifetimes of simple specimens subjected to similar delayed failure modes. In general, two different mechanisms are responsible for delayed failure behavior in ceramics, depending on the material, microstructure, size of inherent flaws, and the level af applied stress. These delayed failure mechanisms are slow crack growth (SCG) and creep rupture. In this paper, a methodology to predict the lifetimes for sintered alpha silicon carbide (SASC) tubes, expected to fail due to SCG mechanism, will be shown. This methodology involved experimental determination of the SCG parameters for the SASC material and the scaling analysis to project the stress rupture data for small specimens (O-rings and compressed C-rings) to large tubular components. Also included in this paper is a methodology to predict the lifetimes for internally pressurized reaction bonded silicon carbide (SCRB210) tubes, for which delayed failure behavior is expected to be controlled by creep rupture mechanism. Finite element analysis (FEM) in association with the Monkman-Grant creep rupture criterion, were used to predict the lifetimes for the SCRB210 tubes. The relationship between the two delayed failure mechanisms, specimen size and applied stress level will also be discussed.

1.
Grathwohl
,
G.
,“
Creep and Fracture of Hot-Pressed Silicon Nitride with Natural and Artificial Flaws
,” in Proceedings of the Second International Conference on Creep and Fracture of Engineering Materials and Structures, Part I,
1984
.
2.
Dalgleish
,
B. J.
,
Slamovich
E. B.
, and
Evans
A. G.
,“
Duality in the Creep Rupture of a Ploycrystalline Alumina
,”
Journal of American Ceramic Society
 0002-7820, Vol.
6
, No.
11
,
1985
, pp. 575–581.
3.
Bassani
,
J. L.
,”
Creep and Fracture of Engineering Materials and Structures
,” in Creep and Fracture of Engineering Materials and Structures,
1981
, pp. 329.
4.
Wiederhorn
,
S. M.
,“
Subcritical Crack Growth in Ceramics
,” in Fracture Mechanics of Ceramics,
Plenum Press
, Vol.
2
,
1974
, pp. 613–646.
5.
Quinn
,
G.
, “
Review of Static Fatigue in Silicon Nitride and Silicon Carbide
,”
Ceramic Proceedings
, Vol.
3
, Nos
1–2
,
1982
, pp77–98.
6.
Quinn
,
G.
, and
Katz
,
R.
, “
Time Dependence of the High Temperature Strength of Sintered Alpha Silicon Carbide
,” TN 79-5,
U.S. Army Materials and Mechanics Research Center
, Watertown, Mass.,
06
1979
.
7.
Srinivisan
,
M.
, “
Elevated Temperature Stress Rupture Response of Sintered Alpha Silicon Carbide
,”
American Ceramic Society Bulletin
 0002-7812, Vol.
58
, No.
3
,
1979
, pp. 347.
8.
Govila
,
R.
, “
High Temperature Strength Characterization of Sintered Alpha Silicon Carbide
,” TR 82-52, NTIS ADA 121437,
U.S. Materials and Mechanics Research Center
, Watertown, Mass.,
10
1982
.
9.
Magida
,
M. B.
,
Forrest
,
K. A.
, and
Heslin
,
T. M.
, “
Dynamic and Static Fatigue of a Machinable Glass Ceramic
,” Methods of Assessing the Structural Reliability of Brittle Materials, ASTM STP 844,
Frieman
S. W.
and
Hudson
C. M.
, Eds.,
ASTM
,
1984
, pp. 81–94.
10.
Chuang
,
T.
, “
A Diffusive Crack-Growth Model for Creep Fracture
,”
J. Amer. Ceram. Soc.
 0002-7820, Vol.
65
, No.
2
, 93 – 103,
1982
.
11.
Fett
,
Theo
, and
Munz
,
Dietrich
, “
Life Time Prediction of Silicon Nitride at High Temperatures
,” ASTM STP 844, 154 – 176,
1984
.
12.
Mecholsky
,
J. J.
, Jr.
,“
Quantitive Analysis of Fracture Origins in Glass
,” Lecture notes,
The Pennsylvania State University
,
1988
.
13.
Golemboski
,
J. E.
, “
Flexural Strength of Low Cost Tubular SiC Materials After Static and Cyclic Loading at Elevated Temperatures
,” M. S. Thesis,
The Pennsylvania State University
, University Park, Pennsylvania,
12
1987
.
14.
Minford
,
E. J.
, “
Flaw Behavior Near the Threshold Stress Intensity for Slow Crack Growth in Silicon Carbide Ceramics at High Temperatures
,” Ph.D. Thesis,
The Pennsylvania State University
, University Park, Pennsylvania,
1983
.
15.
Yavuz
,
B. O.
, “
Subcritical Crack Growth Behavior and Threshold Stress Intensity for Crack Growth In Silicon Carbide Ceramics at Elevated Temperatures
,” Ph.D. Thesis,
The Pennsylvania State University
, University Park, Pennsylvania,
1987
.
16.
Evans
,
A. G.
, “
Slow Crack Growth in Brittle Materials Under Dynamic Loading Conditions
,”
International Journal of Fracture
, Vol.
10
, No.
2
, 251 – 259,
1974
.
17.
Jadaan
,
O. M.
, and
Tressler
,
R. E.
,“
Methodology to Predict Delayed Failure Due to Slow Crack Growth in Ceramic Tubular Components Using Data from Simple Specimens
,” to be published in the
Journal of Engineering Materials and Technology
,
ASME
,
07
1993
.
18.
SAS User's guide: Basics
,
SAS Institute Inc.
,
Gary, North Carolina
.
19.
Chuang
,
T.
,
Tressler
,
R. E.
, and
Minford
,
E. J.
, “
On the Static Fatigue Limit at Elevated Temperatures
,”
Materials Science and Engineering
 0025-5416, Vol.
82
, 187 – 195,
1986
.
20.
Jadaan
,
O. M.
, “
Fast Fracture and Lifetime Prediction of Ceramic Tubular Components
,” Ph.D. Thesis,
The Pennsylvania State University
, University Park, Pennsylvania,
1990
.
21.
Jadaan
,
O. M.
,
Shelleman
,
D. L.
,
Conway
,
J. C.
, Jr.
,
Mecholsky
,
J. J.
, Jr.
, and
Tressler
,
R. E.
, “
Prediction of the Strength of Ceramic Tubular Components: Part I-Analysis
,”
Journal of Testing and Evaluation
 0090-3973, Vol.
19
, No.
3
, 181–191,
05
1991
.
22.
McHenry
,
K. D.
, “
Elevated Temperature Slow Crack Growth in Hot Pressed and Sintered Silicon Carbide
,” Ph.D. Thesis,
The Pennsylvania State University
, University Park, Pennsylvania,
1978
.
23.
Quinn
,
G.
, and
Katz
,
R. N.
, “
Time-Dependent High Temperature Strength of Sintered Alpha SiC
,”
J. Amer. Ceram. Soc.
 0002-7820, Vol.
63
, No.
1 – 2
, 117 – 119,
1980
.
24.
Govila
,
R. K.
, “
Flexural Stress Rupture Strength of Sintered α-SiC
,” Time Dependent Failure Mechanisms and Assessment Methodologies, pp. 100 – 110,
Early
J. G.
,
Shives
R.
, and
Smith
J. H.
(Eds.),
Cambridge University Press
,
1982
.
25.
Shelleman
,
D. L.
,
Jadaan
,
O. M.
,
Butt
,
D. P.
,
Tressler
,
R. E.
,
Hellman
,
J. R.
, and
Mecholsky
,
J. J.
, Jr.
,”
High Temperature Tube Burst Test Apparatus
,”
Journal of Testing and Evaluation
 0090-3973, Vol.
20
, No.
4
, 275–284,
07
1992
.
26.
Shelleman
,
D. L.
,“
Test Methodology for Tubular Ceramic Components (Fast Fracture Strength Study)
,” Ph.D. Thesis,
The Pennsylvania State University
, University Park, Pennsylvania,
05
1991
.
27.
Monkman
,
F. C.
, and
Grant
,
N. J.
, “
An Empirical Relationship Between Rupture Life and Minimum Creep Rate in Creep-Rupture Tests
,”
ASTM Proceedings
, Vol.
56
, 593 – 605,
1956
.
28.
Deglano
,
G. N.
, and
Swanson
,
J. A.
,
ANSYS: User's Manual
.
Swanson Analysis System, Inc.
,
Houston, PA
,
1988
.
29.
Wiederhorn
,
S. M.
, et al
, “
Test Methodology for Tubular Components
,” pp. 257 – 276 in Projects Within the Center for Advanced Materials, annual report to
Gas Research Institute, Center for Advanced Materials, The Pennsylvania State University
,
05
1989
.
30.
Shelleman
,
D. L.
,
Jadaan
,
O. M.
,
Conway
,
J. C.
, Jr.
,
Mecholsky
,
J. J.
, “
Prediction of the Strength of Ceramic Tubular Components: Part II-Experimental Verification
,”
Journal of Testing and Evaluation
 0090-3973, Vol.
19
, No.
3
, 192–200,
05
1991
.
31.
Newman
,
J. C.
, Jr.
, and
Raju
,
I. S.
, “
Analysis of Surface Cracks in Finite Plates Under Tension or Bending Loads
,” NASA Technical Paper 1578,
1979
.
32.
Quinn
,
G. D.
,“
Characterization of Turbine Ceramics After Long-Term Environmental Exposure
,” Report No. AMMRCTR 80-15.
U.S. Army Materials Technology Laboratory
,
04
1980
.
33.
Quinn
,
G. D.
,“
Static Fatigue of a Siliconized Silicon Carbide
,” Report No. TR 87-20.
U.S. Army Materials Technology Laboratory
,
1981
.
34.
Govila
,
R. K.
, “
Phenomenology of Fracture in Sintered Alpha Silicon Carbide
,”
J. Materials Science
 0022-2461, Vol.
19
, 2111 – 2120,
1984
.
35.
Quinn
,
G. D.
, “
Stress Rupture of Sintered Alpha SiC
,” Technical Report AMMRC TN 81 - 4,
1981
.
36.
Walton
,
M. A.
, “
Dynamic Fatigue of SiC at Elevated Temperatures
,” M.S. Thesis,
The Pennsylvania State University
, University Park, Pennsylvania,
1980
.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal