Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Life Prediction Methodologies and Data for Ceramic Materials
By
CR Brinkman
CR Brinkman
1
Martin Marietta Energy Systems
;
Oak Ridge, TN 37831-6154
;
symposium chairman and editor
.
Search for other works by this author on:
SF Duffy
SF Duffy
2
Cleveland State University
,
Cleveland, OH 44115
;
symposium chairman and editor
.
Search for other works by this author on:
ISBN-10:
0-8031-1864-3
ISBN:
978-0-8031-1864-5
No. of Pages:
426
Publisher:
ASTM International
Publication date:
1994

Fracture mechanism maps provide a means of assessing the structural reliability of ceramics at elevated temperatures. They can be used to summarize large quantities of data dealing with effects of load, temperature and environment on component lifetime. They also can be used to generate a design envelope that defines stress allowables for a given application. In this paper, we review the history and philosophy behind fracture mechanism maps and then discuss methods of obtaining such maps in an efficient manner. Based on data obtained in simple tensile tests, these methods are illustrated for one of the newer grades of silicon nitride. The map is then used to compare this material with a high temperature structural alloy, and another, older grade of silicon nitride. Finally, we discuss the use of fracture mechanism maps for design.

1.
Smyth
,
J.R.
and
Morey
,
R.E.
Advanced Turbine Technology Applications Project Progress in Year Four
,” pp. 47–55 in Proceedings of the Annual Automotive Technology Development Contractors' Coordination Meeting 1991, P-256,
Dearborn, MI
, October 28–31, 1991.
Society of Automotive Engineers, Inc.
,
400 Commonwealth Dr., Warrendale, PA 15096-0001
,
06
1992
.
2.
Ashby
,
M.F.
,
Gandhi
,
C.
and
Taplin
,
D.M.R.
, “
Fracture-Mechanism Maps and their Construction for F.C.C. Metals and Alloys
,”
Acta Metallurgica
, Vol.
27
,
1979
, pp 699–729.
3.
Gandhi
,
C.
and
Ashby
,
M.F.
, “
Fracture-Mechanism Maps for Materials which Cleave: F.C.C., B.C.C. and H.C.P. Metals and Ceramics
,”
Acta Metallurgica
Vol.
27
,
1979
, pp 1565–1602.
4.
Quinn
,
G.D.
Fracture Mechanism Maps for Silicon Nitride
,” pp. 931–9 in Ceramic Materials and Components for Engines,
Bunk
W.
and
Hausner
H.
eds.,
Verlag Deutsche Keramische Gesellschaft
,
D-5340 Bad Honnef, Germany
(
1986
).
5.
Quinn
,
G.D.
Fracture Mechanism Maps for Advanced Structural Ceramics, Part 1, Methodology and Hot Pressed Silicon Nitride Results
,”
Journal of Materials Science
 0022-2461, Vol.
25
,
1990
, pp 4361–4376.
6.
Weibull
,
W.
A Statistical Distribution Function of Wide Applicability
,”
Journal of Applied Mechanics
 0021-8936, Vol.
18
,
1951
, pp 293–297.
7.
Evans
,
A.G.
and
Wiederhorn
,
S.M.
, “
Crack Propagation and Failure Prediction in Silicon Nitride at Elevated Temperatures
,”
Journal of Materials Science
 0022-2461, Vol.
9
,
1974
, pp 270–278.
8.
Ritter
,
J.E.
, Jr.
, “
Engineering Design and Fatigue Failure of Brittle Materials
,” pp. 667–686 in Fracture Mechanics of Ceramics, Vol.
4
, Edited by
Bradt
R.C.
,
Hasselman
D.P.H.
and
Lange
F.F.
,
Plenum Publ. Corp.
,
New York
(
1978
).
9.
Monkman
,
F.C.
and
Grant
,
N.J.
An Empirical Relationship between Rupture Life and Minimum Creep Rate in Creep-Rupture Tests
,” Proceedings of the American Society of Testing and Materials, Vol.
56
,
1956
, pp 593–620.
10.
Quinn
,
G.D.
and
Braue
,
W.R.
Fracture Mechanism Maps for Advanced Structural Ceramics, Part 2, Sintered Silicon Nitride
,”
Journal of Materials Science
 0022-2461, Vol.
25
,
1990
, pp 4377–92.
11.
Matsui
,
M.
,
Ishida
,
M.
,
Soma
,
T.
and
Oda
,
I.
Ceramic Turbocharger Rotor Design Considering Long Term Durability
,” pp. 1043–50 in Ceramic Materials and Components for Engines,
Bunk
W.
and
Hausner
H.
eds.,
Verlag Deutsche Keramische Gesellschaft
,
D-5340 Bad Honnef, Germany
(
1986
).
12.
Carroll
,
D.F.
,
Wiederhorn
,
S.M.
and
Roberts
,
D.E.
Technique for Tensile Creep Testing of Ceramics
,”
Journal of the American Ceramic Society
 0002-7820, Vol.
72
,
1989
, pp 1610–14.
13.
Foley
,
M.R.
,
Rossi
,
G.A.
,
Sundberg
,
G.J.
,
Wade
J.A.
and
Wu
,
F.J.
, “
Analytical and Experimental Evaluation of Joining Silicon Carbide to Silicon Carbide and Silicon Nitride for Advanced Heat Engine Applications
, Final Report, Subcontract 86X-SBO45C,
Norton Company
,
30
09
1991
, pp 56–86.
14.
Ohji
Tatstuki
and
Yamauchi
Yukihiko
, “
Long-Term Tensile Creep Testing for Advanced Ceramics
,”
Journal of the American Ceramic Society
 0002-7820, Vol.
75
, No.
8
,
08
1992
, pp 2304–307.
15.
Liu
,
K.C.
,
Pih
,
H.
and
Voorhes
,
D.W.
, “
Uniaxial Tensile Strain Measurement for Ceramic Testing at Elevated Temperatures: Requirements, Problems, and Solutions
,”
International tournai of High Technology Ceramics
, Vol.
4
,
1988
, pp 161–171.
16.
Pears
,
C.D.
and
Digesu
,
F.J.
, “
Gas-Bearing Facilities for Determining Axial Stress-Strain and Lateral Strain of Brittle Materials to 5500 F
,”
Proceedings of the American Society of Testing Materials
, Vol.
65
,
1965
, pp 855–73.
17.
Gürtler
,
M.
and
Grathwohl
,
G.
, “
Tensile Creep Testing of Sintered Silicon Nitride
,” pp. 399–408 in Proceedings of the Fourth International Conference on Creep and Fracture of Engineering Materials and Structures,
Institute of Metals
,
1 Carlton House Terrace, London SW1Y 5DB
(
1990
).
18.
Gürtler
M.
,
Weddigen
A.
and
Grathwohl
G.
, “
Werkstoffprüfung von Hochleistungskeramik mit Zugproben
,”
Mat.-wiss. u. Werkstofftech.
, Vol.
20
,
1989
, pp 291–299.
19.
Arons
,
R.M.
and
Tien
,
J.K.
, “
Creep and Strain Recovery in Hot-Pressed Silicon Nitride
,”
Journal of Materials Science
 0022-2461, Vol.
15
,
1980
, pp 2046–2058.
20.
Hockey
,
B.J.
,
Wiederhorn
,
S.M.
,
Liu
,
W.
,
Baldoni
J.G.
and
Buljan
,
S.-T.
, “
Tensile Creep of Whisker-Reinforced Silicon Nitride
,”
Journal of Materials Science
 0022-2461, Vol.
26
,
1991
, pp 3931–3930.
21.
Wiederhorn
,
S.M.
,
Hockey
,
B.J.
,
Cranmer
D.C.
and
Yeckley
,
R.
, “
Transient Creep Behavior of Hot Isostatically Pressed Silicon Nitride
,”
Tournai of Materials Science
, Vol.
28
,
1993
, pp 445–453.
22.
Ferber
,
M.K.
and
Jenkins
,
M.G.
, “
Evaluation of the Elevated-Temperature Mechanical Reliability of a HIP-ed Silicon Nitride
,”
Journal of the American Ceramic Society
 0002-7820, Vol.
75
, No.
9
,
1992
, pp 2453–62.
23.
Ohji
,
T.
and
Yamauchi
,
Y.
, “
Tensile Creep and Creep Rupture Behavior of Monolithic and SiC Whisker Reinforced Silicon Nitride
,”
Journal of the American Ceramic Society
 0002-7820, to be published.
24.
Raj
,
R.
and
Morgan
,
P.E.D.
, “
Activation Energies for Densification, Creep and Grain-Boundary Sliding in Nitrogen Ceramics
,”
Journal of the American Ceramic Society
 0002-7820 Vol.
64
,
1981
, pp C143–C145.
25.
Khandelwal
,
P.K.
, “
Life Prediction Methodology for Ceramic Components of Advanced Vehicular Heat Engines
,” pp. 176–179 in Ceramic Technology Project Bimonthly Technical Progress Report to DOE Office of Transportation Technologies, April to May 1992, D.R. Johnson, Project Manager, Ceramic Technology Project.
26.
Jenkins
,
M.G.
,
Ferber
,
M.K.
and
Lin
,
C.-K. J.
, “
Apparent Enhanced Fatigue Resistance under Cyclic Tensile Loading for a HIPed Silicon Nitride
,”
Journal of the American Ceramic Society
 0002-7820, Vol.
76
,
1993
, pp 788–792.
27.
Davidge
,
R.W.
,
McLaren
,
J.R.
and
Tappin
,
G.
,
Journal of Materials Science
 0022-2461 “
Strength Probability Time (SPT) Relationships in Ceramics
,” Vol.
8
,
1973
, pp 1699–1709.
28.
Hertzberg
,
R.W.
,
Deformation and Fracture Mechanics of Engineering Materials
,
John Wiley and Sons
,
New York
(
1976
).
29.
Wiederhorn
,
S.M.
and
Fuller
,
E.R.
, Jr.
, “
Structural Reliability of Ceramic Materials
,”
Materials Science and Engineering
 0025-5416, Vol.
71
,
1985
, pp 169–86.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal