Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Compression Response of Composite Structures
By
SE Groves
SE Groves
1
Lawrence Livermore National Laboratory
,
Livermore, CA
;
symposium chairman and editor
Search for other works by this author on:
AL Highsmith
AL Highsmith
2
University of Alabama
,
Tuscaloosa, AL
;
symposium co-chairman and editor
Search for other works by this author on:
ISBN-10:
0-8031-1499-0
ISBN:
978-0-8031-1499-9
No. of Pages:
372
Publisher:
ASTM International
Publication date:
1994

A simple micromechanics-based material model for nonlinear analysis of thick-section laminated composites is presented. The model, which has been incorporated in a finite element package, provides constitutive information for the laminate at a material point (Gaussian integration point) in a standard displacement-based isoparametric 3-D or thick-shell finite element. This integrated approach allows the use of micromechanics-based criteria for detection of failure, including compression kink banding, in the analysis of a composite structure or structural component. A nonlinear elastic power-law model is used to reflect matrix shear softening; simple maximum stress criteria are used for detection of failure in constituent phases; and the tangent shear modulus of the matrix phase (determined as a function of load level during the nonlinear stress analysis of the composite) is used in the Hahn-Williams criterion to detect compression kink banding. Numerical procedures are used to redistribute the load in damaged regions. Detailed comparisons with published numerical and experimental results are presented, including: elastic modulus predictions for a graphite/epoxy lamina; nonlinear response of unidirectional boron/epoxy laminae and laminates with various stacking sequences; and nonlinear response of a notched graphite/epoxy laminate in compression.

1.
Rosen
,
B. W.
, “
Mechanics of Composite Strengthening
,”
Fiber Composite Materials
,
American Society for Metals
,
Metals Park, OH
,
1965
, pp. 37–75.
2.
Argon
,
A. S.
, “
Fracture of Composites
,”
Treatise on Materials Science and Technology
, Vol.
1
,
Herman
H.
, Ed.,
Academic Press
,
New York
,
1972
, pp. 79–114.
3.
Budiansky
,
B.
, “
Micromechanics
,”
Computers and Structures
 0045-7949, Vol.
16
,
1983
, pp. 3–12.
4.
Hahn
,
H. T.
and
Williams
,
J. G.
, “
Compression Failure Mechanisms in Unidirectional Composites
,”
Composite Materials: Testing and Design (Seventh Conference)
, ASTM STP 893,
Whitney
J.
, Ed.,
American Society for Testing and Materials
,
Philadelphia
,
1986
, pp. 115–139.
5.
Lagoudas
,
D. C.
,
Tadjbakhsh
, and
Fares
,
N.
, “
A New Approach to Microbuckling of Fibrous Composites
,”
ASME Journal of Applied Mechanics
 0021-8936, Vol.
58
,
1991
, pp. 473–479.
6.
Lo
,
K. H.
and
Chim
,
E. S-M.
, “
Compressive Strength of Unidirectional Composites
,”
Journal of Reinforced Plastics and Composites
, Vol.
11
,
1992
, pp. 838–896.
7.
Waas
,
A. M.
,
Babcock
,
C. D.
 Jr.
, and
Knauss
,
W. G.
, “
A Mechanical Model for Elastic Fiber Microbuckling
,”
ASME Journal of Applied Mechanics
 0021-8936, Vol.
57
,
1990
, pp. 138–149.
8.
Aboudi
,
J.
,
Mechanics of Composite Materials—A Unified Micromechanical Approach
,
Elsevier
,
New York
,
1991
.
9.
Sun
,
C. T.
and
Chen
,
J. L.
, “
A Micromechanical Model for Plastic Behavior of Fibrous Composites
,”
Composites Science and Technology
 0266-3538, Vol.
40
,
1990
, pp. 115–129.
10.
Pecknold
,
D. A.
, “
A Framework for 3-D Nonlinear Modeling of Thick-Section Composites
,” DTRC-SME 90/92,
David Taylor Research Center
, Bethesda, MD,
1990
.
11.
McCullough
,
R. L.
, “
Micro-Models for Composite Materials-Continuous Fiber Composites
,”
The Delaware Composites Design Encyclopedia, Vol. 2: Micromechanical Materials Modeling
,
Carlsson
L. A.
and
Gillespie
J. W.
, Eds.,
Technomic Publishing Co.
,
Westport, CT
,
1990
.
12.
Abolin'sh
,
D. S.
, “
Compliance Tensor for an Elastic Material Reinforced in One Direction
,”
Polymer Mechanics
, Vol.
1
,
1965
, pp. 28–32.
13.
Shaffer
,
B. W.
, “
Stress-Strain Relations of Reinforced Plastics Parallel and Normal to Their Internal Filaments
,”
AIAA Journal
 0001-1452, Vol.
2
,
1964
, pp. 348–352.
14.
Rahman
,
S.
and
Pecknold
,
D. A.
, “
Micromechanics-Based Analysis of Fiber-Reinforced Laminated Composites
,” Structural Research Series No. 572,
Department of Civil Engineering, University of Illinois at Urbana-Champaign
,
Urbana, IL
,
09
1992
.
15.
Roy
,
A. K.
and
Tsai
,
S. W.
, “
Three-Dimensional Effective Moduli of Orthotropic and Symmetric Laminates
,”
ASME Journal of Applied Mechanics
 0021-8936, Vol.
114
,
1992
, pp. 39–47.
16.
Pagano
,
N. J.
, “
Exact Moduli of Anisotropic Laminates
,”
Mechanics of Composite Materials
,
Sendeckyj
G. P.
, Ed.,
Academic Press
,
New York
,
1974
, pp. 23–44.
17.
Sun
,
C. T.
and
Li
,
S.
, “
Three-Dimensional Effective Elastic Constants for Thick Laminates
,”
Journal of Composite Materials
, Vol.
22
,
1988
, pp. 629–639.
18.
Camponeschi
,
E. T.
 Jr.
, “
Compression Response of Thick-Section Composite Materials
,” DTRC-SME-90/60,
David Tavlor Research Center
, Bethesda, MD,
1990
.
19.
Tsai
,
S. W.
, “
A Survey of Macroscopic Failure Criteria for Composite Materials
,”
Journal of Reinforced Plastics and Composites
, Vol.
3
,
1984
, pp. 40–62.
20.
Nahas
,
M. N.
, “
Survey of Failure and Post-Failure Theories of Laminated Fiber-Reinforced Composites
,”
Journal of Composites Technology and Research
 0884-6804, Vol.
8
,
1986
, pp. 138–153.
21.
Tsai
,
S. W.
and
Wu
,
E. M.
, “
A General Theory of Strength for Anisotropic Materials
,”
Journal of Composite Materials
, Vol.
5
,
1971
, pp. 58–80.
22.
Hashin
,
Z.
, “
Failure Criteria for Unidirectional Fiber Composites
,”
ASME Journal of Applied Mechanics
 0021-8936, Vol.
47
,
1980
, pp. 329–344.
23.
Aboudi
,
J.
, “
Micromechanical Analysis of Strength of Unidirectional Fiber Composites
,”
Composites Science and Technology
 0266-3538, Vol.
33
,
1988
, pp. 79–96.
24.
Kriz
,
R. D.
and
Stinchcomb
,
W. W.
, “
Elastic Moduli of Transversely Isotropic Graphite Fibers and Their Composites
,”
Experimental Mechanics
, Vol.
19
,
1979
, pp. 41–49.
25.
Petit
,
P. H.
and
Waddoups
,
M. E.
, “
A Method of Predicting the Nonlinear Behavior of Laminated Composites
,”
Journal of Composite Materials
, Vol.
3
,
1969
, pp. 2–19.
26.
Chang
,
F.-K.
and
Lessard
,
L. B.
, “
Damage Tolerance of Laminated Composites Containing an Open Hole and Subjected to Compressive Loadings: Part I—Analysis
,”
Journal of Composite Materials
, Vol.
25
,
1991
, pp. 2–43.
27.
Chang
,
F.-K.
and
Lessard
,
L. B.
, “
Damage Tolerance of Laminated Composites Containing an Open Hole and Subjected to Compressive Loadings: Part II—Experiment
,”
Journal of Composite Materials
, Vol.
25
,
1991
, pp. 44–64.
28.
Hahn
,
H. T.
and
Tsai
,
S. W.
, “
Nonlinear Elastic Behavior of Unidirectional Composite Laminae
,”
Journal of Composite Materials
, Vol.
7
,
1973
, pp. 102–118.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal