Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Cyclic Deformation, Fracture, and Nondestructive Evaluation of Advanced Materials: Second Volume
By
MR Mitchell
MR Mitchell
1
Rockwell International Science Center
,
Thousand Oaks CA 91360
;
symposium chairman and editor
Search for other works by this author on:
O Buck
O Buck
2
Iowa State University, Ames Laboratory
,
Ames, IA 50011
;
symposium chairman and editor
Search for other works by this author on:
ISBN-10:
0-8031-1989-5
ISBN:
978-0-8031-1989-5
No. of Pages:
405
Publisher:
ASTM International
Publication date:
1994

Yield, plastic flow, and low-cycle fatigue damage behavior of an orthotropic Al-6061-T6 plate were investigated. Anisotropic constitutive relations and multiaxial fatigue damage models of the material were obtained to predict its yield, plastic deformation, and low-cycle fatigue life under multiaxial loading conditions. Low-cycle fatigue tests were conducted along three orientations of the plate at room temperature under three loading conditions, uniaxial tension/compression, torsion, and combined tension/torsion in-phase, to verify the theoretical predictions. The theoretical yield functions and flow relations under combined tension/torsion loading condition agreed with experimental data reasonably well. Four multiaxial fatigue damage models were evaluated and used to predict the low-cycle fatigue life along the three orientations of the plate. A damage model based on the strain vector and an anisotropic shear cracking model gave better predictions than the effective strain and the plastic work models.

1.
Wang
,
S. S.
,
Chim
,
E. S. M.
, and
Socie
,
D. F.
, “
Biaxial Fatigue of Fiber-Reinforced Composites at Cryogenic Temperature. Part I: Fatigue Fracture Life and Mechanisms
,”
Journal of Engineering Materials and Technology, Transactions
,
American Society of Mechanical Engineers
,
New York
, Vol.
104
,
1982
, pp. 128–136.
2.
Soemardi
,
T. P.
,
Lai
,
D.
, and
Bathias
,
C.
, “
Static and Fatigue Biaxial Testing of Fiber Composites using Thin Walled Tubular Specimens
,”
Inelastic Deformation of Composite Materials
,
Dvorak
G. J.
, Ed.,
Springer-Verlag
,
New York
,
1991
, pp. 581–603.
3.
Ikegami
,
K.
and
Yoshida
,
M.
, “
Constitutive Relations of Hybrid Fiber Reinforced Plastics of GFRP/ CFRP and GFRP/AFRP under Combined Stress State
,”
Inelastic Deformation of Composite Materials
,
Dvorak
G. J.
, Ed.,
Springer-Verlag
,
New York
,
1991
, pp. 623–638.
4.
Guess
,
T. R.
, “
Biaxial Testing of Composite Cylinders Experimental-Theoretical Comparison
,”
Composites
,
1980
, pp. 139–148.
5.
Nahas
,
M. N.
, “
Survey of Failure and Post Failure Theories of Laminated Fiber-Reinforced Composites
,”
Journal of Composites Technology & Research
 0884-6804, Vol.
8
,
1986
, pp. 138–153.
6.
Owen
,
M. J.
and
Griffiths
,
J. R.
, “
Evaluation of Biaxial Stress Fatigue Surface for a Glass Fabric Reinforced Polyester Resin under Static and Fatigue Loading
,”
Journal of Material Science
 0022-2461, Vol.
13
,
1978
, pp. 1521–1537.
7.
Krempl
,
E.
and
Niu
,
T. M.
, “
Graphite/Epoxy [±45°]s Tubes. Their Static Axial and Shear Properties and Their Fatigue Behavior under Completely Reversed Load Controlled Loading
,”
Journal of Composite Materials
, Vol.
16
,
1982
, pp. 172–178.
8.
Hashin
,
Z.
and
Rotem
,
Z.
, “
A Fatigue Failure Criterion for Fiber Reinforced Materials
,”
Journal of Composite Materials
, Vol.
7
,
1973
, pp. 448–464.
9.
Tsai
,
S. W.
and
Wu
,
E. M.
, “
A General Theory of Strength of Anisotropic Materials
,”
Journal of Composite Materials
, Vol.
5
,
1971
, pp. 58–80.
10.
Swanson
,
S. R.
,
Messick
,
M.
, and
Tian
,
Z.
, “
Failure of Carbon/Epoxy Laminate under Combined Stress
,”
Journal of Composite Materials
, Vol.
21
,
1987
, pp. 619–630.
11.
Hutchinson
,
J. W.
, “
Elastic-Plastic Behavior of Polycrystalline Metals and Composites
,”
Proceedings
,
Royal Society
(
London
), Vol.
A319
,
1970
, pp. 247–272.
12.
Lin
,
T. H.
, “
A Physical Theory of Plasticity and Creep
,”
Journal of Engineering Materials and Technology, Transactions
,
American Society of Mechanical Engineers
,
New York
, Vol.
106
,
1984
, pp. 290–294.
13.
Hill
,
R.
, “
A Theory of the Yield and Plastic Flow of Anisotropic Metals
,”
Proceedings
,
Royal Society
(
London
), Vol.
A193
,
1948
, pp. 281–297.
14.
Edelman
,
R.
and
Drucker
,
D. C.
, “
Some Extensions of Elementary Plasticity
,”
Journal of the Franklin Institute
 0016-0032, Vol.
251
,
1951
, p. 581.
15.
Shih
,
C. F.
and
Lee
,
D.
, “
Further Developments in Anisotropic Plasticity
,”
Journal of Engineering Materials and Technology, Transactions
,
American Society of Mechanical Engineers
,
New York
, Vol.
100
,
1978
, pp. 294–302.
16.
Frederking
,
R. M. W.
and
Sidebottom
,
D. M.
, “
An Experimental Evaluation of Plasticity Theories for Anisotropic Metals
, ”
Journal of Applied Mechanics, Transactions
,
American Society of Mechanical Engineers
,
New York
, Vol.
38
,
1971
, pp. 15–22.
17.
Harvey
,
S. J.
, “
The Use of Anisotropic Yield Surfaces in Cyclic Plasticity
,”
Multiaxial Fatigue
, ASTM STP 853,
American Society for Testing and Materials
,
Philadelphia
,
1985
, pp. 49–53.
18.
Budianski
,
B.
, “
Anisotropic Plasticity of Plane Isotropie Sheets
,”
Mechanics of Material Behavior
,
Dvorak
G. J.
and
Shield
R. T.
, Eds.,
Elsevier
,
Amsterdam
,
1984
, pp. 15–29.
19.
Voyiadjis
,
G. Z.
and
Foroozesh
,
M.
, “
Anisotropic Distorsional Yield Model
,”
Journal of Applied Mechanics
 0021-8936, Vol.
57
,
1990
, pp. 537–547.
20.
Barlat
,
F.
,
Lege
,
D. L.
, and
Brem
,
J. C.
, “
A Six-Component Yield Function for Anisotropic Materials
,”
International Journal of Plasticity
, Vol.
7
,
1991
, pp. 693–712.
21.
Stout
,
M. G.
,
Hecker
,
S. S.
, and
Bourcier
,
R.
, “
An Evaluation of Anisotropic Effective Stress-Strain Criteria for the Yield and Flow of 2024 Aluminum Tubes
,”
Journal of Engineering Materials and Technology, Transactions
,
American Society of Mechanical Engineers
,
New York
, Vol.
105
,
1983
, pp. 242–249.
22.
Forsyth
,
P. J. E.
,
The Physical Basis of Metal Fatigue
,
American Elsevier Publishing Co.
,
New York
,
1969
.
23.
Frost
,
N. E.
,
Marsh
,
K. I.
, and
Pook
,
L. P.
,
Metal Fatigue
,
Oxford University Press
,
London
,
1974
.
24.
Suresh
,
S.
,
Fatigue of Materials
,
Cambridge Press
,
London
,
1991
.
25.
Gough
,
H. J.
,
The Fatigue of Metals
,
Van Nostrand and Co.
,
New York
,
1926
.
26.
Miller
,
K. J.
and
Chandler
,
D. C.
, “
High Strain Torsion Fatigue of Solid and Tubular Specimens
,”
Proceedings of the Institution of Mechanical Engineers
, Vol.
184
, 1969–70, pp. 433–448.
27.
Hurd
,
N. J.
and
Irving
,
P. E.
, “
Factors Influencing Propagation of Mode III Fatigue Cracks under Torsional Loading
,”
Design of Fatigue and Fracture Resistant Structures
, ASTM STP 761,
American Society for Testing and Materials
,
Philadelphia
,
1982
, pp. 212–233.
28.
Nayeb-Hashemi
,
H.
,
McClintock
,
F. A.
, and
Ritchie
,
R. O.
, “
Micromechanical Modeling of Mode III Fatigue Crack Growth in Rotor Steels
,”
International Journal of Fracture
, Vol.
23
,
1983
, pp. 163–185.
29.
Nayeb-Hashemi
,
H.
,
McClintock
,
F. A.
, and
Ritchie
R. O.
, “
Effect of Friction and High Torque on Fatigue Crack Propagation in Mode III
,”
Metallurgical Transactions
, Vol.
13A
,
1982
, pp. 2197–2205.
30.
Hurd
,
N. J.
and
Irving
,
P. E.
, “
Smooth Specimen Fatigue Live and Microcrack Growth Mode in Torsion
,”
Multiaxial Fatigue
, ASTM STP 853,
American Society for Testing and Materials
,
Philadelphia
,
1985
, pp. 267–284.
31.
Bannantine
,
J. A.
and
Socie
,
D. F.
, “
Observation of Cracking Behavior in Tension and Torsion
,”
Low Cycle Fatigue
, ASTM STP 942,
American Society for Testing and Materials
,
Philadelphia
,
1988
, pp. 899–921.
32.
Lanza
,
G.
, “
Strength of Shaft Subjected to Both Twisting and Bending
,”
Transactions
,
American Society of Mechanical Engineers
,
New York
,
1886
, pp. 130–144.
33.
Gough
,
H. J.
and
Pollard
,
H. V.
, “
The Strength of Metals under Combined Alternating Stresses
,”
Proceedings of the Institution of Mechanical Engineers
, Vol.
131
,
1935
, pp. 3–54.
34.
Sines
,
G.
, “
Fatigue Criterion under Combined Stresses or Strains
, ”
Journal of Engineering Materials and Technology, Transactions
,
American Society of Mechanical Engineers
,
New York
, Vol.
103
,
1981
, pp. 82–90.
35.
Dowling
,
N. E.
, “
Torsional Fatigue Life of Power Plant Equipment Rotating Shafts
,” DOE/RA/ 29353-1,
Westinghouse R&D Center
,
1982
.
36.
Feltner
,
C. E.
and
Morrow
,
J.
, “
Microplastic Strain Hysteresis Energy as a Criterion for Fatigue Fracture
,”
Journal of Basic Engineering, Transactions
,
American Society of Mechanical Engineers
,
New York
, Vol.
83
,
1961
, pp. 15–22.
37.
Halford
,
G. R.
, “
The Energy Required for Fatigue
,”
Journal of Materials
, Vol.
1
,
1966
, pp. 3–18.
38.
Garud
,
Y. S.
, “
A New Approach to the Evaluation of Fatigue under Multiaxial Loadings
,”
Journal of Engineering Materials and Technology, Transactions
,
American Society of Mechanical Engineers
,
New York
, Vol.
103
,
1981
, pp. 118–125.
39.
Lefebre
,
D.
,
Neale
,
K. W.
, and
Ellyin
,
F. A.
, “
A Criterion for Low Cycle Fatigue Failure under Biaxial State of Stress
,”
Journal of Engineering Materials and Technology, Transactions
,
American Society of Mechanical Engineers
,
New York
, Vol.
103
,
1981
, pp. 1–6.
40.
Ellyin
,
F.
and
Golos
,
K.
, “
Multiaxial Fatigue Damage Criterion
,”
Journal of Engineering Materials and Technology, Transactions
,
American Society of Mechanical Engineers
,
New York
, Vol.
110
,
1988
, pp. 63–68.
41.
Ellyin
,
F.
,
Golos
,
K.
, and
Xia
,
Z.
, “
In-Phase and Out-of-Phase Multiaxial Fatigue
,”
Journal of Engineering Materials and Technology, Transactions
,
American Society of Mechanical Engineers
,
New York
, Vol.
113
,
1991
, pp. 112–118.
42.
Findley
,
W. N.
, “
Combined Stress Fatigue Strength of 765-T61 Aluminum Alloy with Superimposed Mean Stresses and Correction for Yielding
,” Technical Note 2924,
NACA
,
1953
.
43.
Findley
,
W. N.
,
Journal of Engineering Materials and Technology, Transactions
,
American Society of Mechanical Engineers
,
New York
, Vol.
79
,
1957
, pp. 337–347.
44.
McDiarmid
,
D. L.
, “
Failure Criteria and Cumulative Damage in Fatigue under Multiaxial Stress Conditions
,” Ph.D. thesis,
City University
, London,
1972
.
45.
McDiarmid
,
D. L.
, “
A General Criterion of Fatigue Failure under Multiaxial Stress
,”
Proceedings
, International Conference on Pressure Vessel Technology,
American Society of Mechanical Engineers
,
New York
,
1973
, pp. 851–862.
46.
Brown
,
M. W.
and
Miller
,
K. J.
, “
A Theory for Fatigue Failure under Multiaxial Stress-Strain Condition
,”
Proceedings of the Institution of Mechanical Engineers
, Vol.
187
,
1973
, pp. 745–755.
47.
Socie
,
D. F.
,
Wail
,
L. E.
, and
Dittmer
,
D. F.
, “
Biaxial Fatigue of Inconel 718 Including Mean Stress Effect
,”
Multiaxial Fatigue
, ASTM STP 853,
American Society for Testing and Materials
,
Philadelphia
,
1985
, pp. 463–478.
48.
Fatemi
,
A.
and
Socie
,
D. F.
, “
A Critical Plane Approach to Multiaxial Fatigue Damage Including Out-of-Phase Loading
,”
Fatigue and Fracture of Engineering Materials and Structures
, Vol.
11
,
1988
, pp. 145–165.
49.
Smith
,
R. N.
,
Waston
,
P.
, and
Topper
,
T. H.
, “
A Stress-Strain Function for the Fatigue of Metals
,”
Journal of Materials
, Vol.
5
,
1970
, pp. 767–778.
50.
Socie
,
D. F.
, “
Multiaxial Fatigue Damage Models
,”
Journal of Engineering Materials and Technology, Transactions
,
American Society of Mechanical Engineers
,
New York
, Vol.
109
,
1987
, pp. 293–298.
51.
Lin
,
H.
and
Nayeb-Hashemi
,
H.
, “
Effects of Material Anisotropy on Cyclic Deformation and Biaxial Fatigue Behavior of Al-6061-T6
,”
Advances in Multiaxial Fatigue
, ASTM STP 1191,
ASTM
,
Philadelphia
, pp. 151–182.
52.
Lin
,
H.
,
Nayeb-Hashemi
,
H.
, and
Pelloux
,
R. M.
, “
Constitutive Relations and Fatigue Life Prediction for Anisotropic Al-6061-T6 Rods under Biaxial Proportional Loadings
,”
International Journal of Fatigue
 0142-1123, Vol.
14
, No.
4
,
1992
, pp. 249–259.
53.
Lin
,
H.
,
Nayeb-Hashemi
,
H.
, and
Pelloux
,
R. M.
, “
A Multiaxial Fatigue Damage Model for Orthotropic Materials
,”
Fatigue and Fracture of Engineering Material Structures
, Vol.
16
, No.
7
,
1993
, pp. 723–742.
54.
Krempl
,
E.
and
Lu
,
H.
, “
Comparison of the Stress Responses of an Aluminum Alloy Tube to Proportional and Alternate Axial and Shear Strain Paths at Room Temperature
,”
Mechanics of Materials
, Vol.
2
,
1984
, pp. 183–192.
55.
Pickard
,
A. C.
and
Knott
,
J. F.
, “
Effects of Testing Method on Cyclic Hardening Behavior in Face-Centered Cubic Alloys
,”
Low Cycle Fatigue
, ASTM STP 942,
American Society for Testing and Materials
,
Philadelphia
,
1988
, pp. 58–76.
56.
Backofen
,
W. A.
,
Deformation Processing
,
Addison-Wesley
,
1972
, p. 47.
57.
Nayeb-Hashemi
,
H.
, “
Failure Modes of Specimens Containing Surface Flaws under Cyclic Torsion
,”
Experimental Mechanics
, Vol.
27
,
1987
, pp. 51–56.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal