Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Modeling of Indoor Air Quality and Exposure
By
NL Nagda
NL Nagda
1
ICF Incorporated
,
vice president, 9300 Lee Highway, Fairfax, VA 22031
;
symposium chairman
.
Search for other works by this author on:
ISBN-10:
0-8031-1875-9
ISBN:
978-0-8031-1875-1
No. of Pages:
308
Publisher:
ASTM International
Publication date:
1993

Among the potential fates of indoor air pollutants are a variety of physical and chemical interactions with indoor surfaces. In deterministic mathematical models of indoor air quality, these interactions are usually represented as a first-order loss process, with the loss rate coefficient given as the product of the surface-to-volume ratio of the room times a deposition velocity. In this paper, the validity of this representation of surface-loss mechanisms is critically evaluated. From a theoretical perspective, the idea of a deposition velocity is consistent with the following representation of an indoor air environment. Pollutants are well-mixed throughout a core region which is separated from room surfaces by boundary layers. Pollutants migrate through the boundary layers by a combination of diffusion (random motion resulting from collisions with surrounding gas molecules), advection (transport by net motion of the fluid), and, in some cases, other transport mechanisms. The rate of pollutant loss to a surface is governed by a combination of the rate of transport through the boundary layer and the rate of reaction at the surface. The deposition velocity expresses the pollutant flux density (mass or moles deposited per area per time) to the surface divided by the pollutant concentration in the core region. This concept has substantial value to the extent that the flux density is proportional to core concentration. Empirically, the problem of human exposure to ozone in commercial buildings has been successfully modeled by using the deposition velocity to parameterize ozone removal onto indoor surfaces. The concept has also been applied in investigations of the indoor dynamics of other pollutant species. However, despite the successful application of this concept, caution is advised in using deposition velocity to characterize pollutant-surface interactions. Limitations that are explored in this paper include these: the presumption of uniform mixing throughout the core region may fail; deposition may vary strongly with position in an enclosure; certain classes of surface-pollutant reactions may not be represented adequately as a first-order loss process; transformation processes within the boundary layer may need to be considered in theoretical investigations; and transport rates through boundary layers may depend strongly on near-surface air flow conditions. Published results from experimental and modeling studies of fine particles, radon decay products, ozone, and nitrogen oxides are used as illustrations of both the strengths and weaknesses of deposition velocity as a parameter to indicate the rate of indoor air pollutant loss on surfaces.

1.
Davidson
,
C. I.
and
Wu
,
Y.-L.
, “
Dry Deposition of Particles and Vapors
,”
Acidic Precipitation, Volume 3: Sources, Deposition, and Canopy Interactions
,
Lindberg
S. E.
,
Page
A. L.
, and
Norton
S. A.
, Eds.,
Springer-Verlag
,
New York
,
1990
, pp. 103–216.
2.
Pruppacher
,
H. R.
,
Semonin
,
R. G.
, and
Slinn
,
W. G. N.
, Eds.,
Precipitation Scavenging, Dry Deposition, and Resuspension
, Vol.
2
,
Elsevier
,
New York
,
1983
.
3.
Weschler
,
C. J.
,
Shields
,
H. C.
,
Naik
,
D. V.
, “
Indoor Ozone Exposures
,”
Journal of the Air Pollution Control Association
 0002-2470, Vol.
39
,
1989
, pp. 1562–1568.
4.
Absil
,
M.
,
Narducci
,
P.
,
Whitfield
,
R.
,
Richmond
,
H. M.
, “
Chronic Lung Injury Risk Estimates for Urban Areas Having Ozone Patterns Similar to Those in the Northeast
,”
Tropospheric Ozone and the Environment II: Effects, Modeling and Control
,
Air and Waste Management Association
,
Pittsburgh, PA
,
1992
, in press.
5.
Yocum
,
J. E.
, “
Indoor-Outdoor Air Quality Relationships: A Critical Review
,”
Journal of the Air Pollution Control Association
 0002-2470, Vol.
32
,
1982
, pp. 500–520.
6.
Allen
,
R. J.
,
Wadden
,
R. A.
,
Ross
,
E. D.
, “
Characterization of Potential Indoor Sources of Ozone
,”
American Industrial Hygiene Association Journal
, Vol.
39
,
1978
, pp. 466–471.
7.
Baer
,
N. S.
and
Banks
,
P. N.
, “
Indoor Air Pollution: Effects on Cultural and Historical Materials
,”
International Journal of Museum Management Curatorship
, Vol.
4
,
1985
, pp. 9–20.
8.
Nazaroff
,
W. W.
,
Ligocki
,
M. P.
,
Ma
,
T.
,
Cass
,
G. R.
, “
Particle Deposition in Museums: Comparison of Modeling and Measurement Results
,”
Aerosol Science and Technology
, Vol.
13
,
1990
, pp. 332–348.
9.
Weschler
,
C. J.
and
Shields
,
H. C.
, “
The Impact of Ventilation and Indoor Air Quality on Electronic Equipment
,”
ASHRAE Transactions
, Vol.
97
,
1991
, pp. 455–463.
10.
Weschler
,
C. I.
, “
Predictions of Benefits and Costs Derived from Improving Indoor Air Quality in Telephone Switching Offices
,”
Indoor Air
, Vol.
1
,
1991
, pp. 65–78.
11.
Gill
,
A. E.
, “
The Boundary-Layer Regime for Convection in a Rectangular Cavity
,”
ASME Journal of Fluid Mechanics
, Vol.
26
,
1966
, pp. 515–536.
12.
Quon
,
C.
, “
Free Convection in an Enclosure Revisited
,”
ASME Journal of Heat Transfer
, Vol.
99
, No.
2
,
1977
, pp. 340–342.
13.
Bauman
,
F.
,
Gadgil
,
A. J.
,
Kammerud
,
R.
,
Altmayer
,
E.
, and
Nansteel
,
M.
, “
Convective Heat Transfer in Buildings: Recent Research Results
,”
ASHRAE Transactions
, Vol.
89
,
1A
,
1982
, pp. 215–233.
14.
Kays
,
W. M.
and
Crawford
,
M. E.
,
Convective Heat and Mass Transfer
, Second Edition,
McGraw Hill
,
New York
,
1980
.
15.
Bejan
,
A.
,
Convection Heat Transfer
,
Wiley Interscience
,
New York
,
1984
.
16.
Moore
,
W. J.
,
Physical Chemistry
, 3rd edition,
Prentice Hall
,
Englewood Cliffs
,
1963
, pp. 302–305.
17.
Adamson
,
A. W.
,
Physical Chemistry of Surfaces
, 4th edition,
Wiley
,
New York
,
1982
, pp. 626–629.
18.
Wilson
,
M. J. G.
, “
Indoor Air Pollution
,”
Proceedings of the Royal Society, Series A
, Vol.
307
,
1968
, pp. 215–221.
19.
Phipps
,
P. B. P.
and
Rice
,
D. W.
, “
The Role of Water in Atmospheric Corrosion
,”
Corrosion Chemistry
, ACS Symposium Series Vol.
89
,
American Chemical Society
,
Washington
,
1979
, pp. 235–261.
20.
Mueller
,
F. X.
,
Loeb
,
L.
,
Mapes
,
W. H.
, “
Decomposition Rates of Ozone in Living Areas
,”
Environmental Science and Technology
 0013-936X, Vol.
7
,
1973
, pp. 342–346.
21.
Sabersky
,
R. H.
,
Sinema
,
D. A.
,
Shair
,
F. H.
, “
Concentrations, Decay Rates, and Removal of Ozone and Their Relation to Establishing Clean Indoor Air
,”
Environmental Science and Technology
 0013-936X, Vol.
7
,
1973
, pp. 347–353.
22.
Traynor
,
G. W.
,
Anthon
,
D. W.
, and
Hollowell
,
C. D.
, “
Technique for Determining Pollutant Emissions from a Gas-Fired Range
,”
Atmospheric Environment
 1352-2310, Vol.
16
,
1982
, pp. 2979–2987.
23.
Knutson
,
E. O.
, “
Modeling Indoor Concentrations of Radon's Decay Products
,”
Radon and Its Decay Products in Indoor Air
,
Nazaroff
W. W.
and
Nero
A. V.
, Eds,
Wiley
,
New York
,
1988
, pp. 161–202.
24.
Ligocki
,
M. P.
,
Liu
,
H. I. H.
,
Cass
,
G. R.
,
John
,
W.
, “
Measurements of Particle Deposition Rates Inside Southern California Museums
,”
Aerosol Science and Technology
, Vol.
13
,
1990
, pp. 85–101.
25.
Toohey
,
R. E.
,
Essling
,
M. A.
,
Rundo
,
J.
, and
Wang
,
H.
, “
Measurements of the Deposition Rates of Radon Daughters on Indoor Surfaces
,”
Radiation Protection Dosimetry
, Vol.
7
,
1984
, pp. 143–146.
26.
Nazaroff
,
W. W.
and
Cass
,
G. R.
, “
Mass-Transport Aspects of Pollutant Removal at Indoor Surfaces
,”
Environmental International
 0160-4120, Vol.
8
,
1988
, pp. 567–584.
27.
Nazaroff
,
W. W.
,
Kong
,
D.
, and
Gadgil
,
A. J.
, “
Numerical Investigations of the Deposition of Unattached 218Po and 212Pb from Natural Convection Enclosure Flow
,”
Journal of Aerosol Science
, Vol.
23
,
1992
, pp. 339–352.
28.
Vanmarcke
,
H.
,
Landsheere
,
C.
,
Van Dingenen
,
R.
, and
Poffijn
,
A.
, “
Influence of Turbulence on the Deposition Rate Constant of the Unattached Radon Decay Products
,”
Aerosol Science and Technology
, Vol.
14
,
1991
, pp. 257–265.
29.
Sinclair
,
J. D.
,
Psota-Kelty
,
L. A.
,
Weschler
,
C. J.
, “
Indoor/Outdoor Concentrations and Indoor Surface Accumulations of Ionic Substances
,”
Atmospheric Environment
 1352-2310, Vol.
19
,
1985
, pp. 315–323.
30.
Sinclair
,
J. D.
,
Psota-Kelty
,
L. A.
,
Weschler
,
C. J.
,
Shields
,
H. C.
, “
Measurement and Modeling of Airborne Concentrations and Indoor Surface Accumulation Rates of Ionic Substances at Neenah, Wisconsin
,”
Atmospheric Environment
 1352-2310, Vol.
24A
,
1990
, pp. 627–638.
31.
Sinclair
,
J. D.
,
Psota-Kelty
,
L. A.
,
Weschler
,
C. J.
, “
Indoor/Outdoor Ratios and Indoor Surface Accumulations of Ionic Substances at Newark, NJ
,”
Atmospheric Environment
 1352-2310, Vol.
22
,
1988
, pp. 461–469.
32.
Raunemaa
,
T.
,
Kulmala
,
M.
,
Saari
,
H.
,
Olin
,
M.
,
Kulmala
,
M. H.
, “
Indoor Air Aerosol Model: Transport Indoors and Deposition of Fine and Coarse Particles
,”
Aerosol Science and Technology
, Vol.
11
,
1989
, pp. 11–25.
33.
Seinfeld
,
J. H.
,
Atmospheric Chemistry and Physics of Air Pollution
,
John Wiley & Sons
,
New York
,
1986
, p. 738.
34.
Milford
,
J. B.
, and
Davidson
,
C. I.
, “
The Sizes of Particulate Sulfate and Nitrate in the Atmosphere—A Review
,”
Journal of the Air Pollution Control Association
 0002-2470, Vol.
37
,
1987
, pp. 125–134.
35.
Finlayson-Pitts
,
B. J.
, and
Pitts
,
J. N.
,
Atmospheric Chemistry
,
John Wiley & Sons
,
New York
,
1986
, p. 1098.
36.
Sinclair
,
J. D.
,
Psota-Kelty
,
L. A.
,
Weschler
,
C. J.
,
Shields
,
H. C.
, “
Deposition of Airborne Sulfate, Nitrate and Chloride Salts as it Relates to Corrosion of Electronics
,”
Journal of the Electrochemical Society
 0013-4651, Vol.
137
,
1990
, pp. 1200–1206.
37.
Jacobi
,
W.
, “
Activity and Potential α-Energy of 222Radon and 220Radon-Daughters in Different Air Atmospheres
,”
Health Physics
 0017-9078, Vol.
22
,
1972
, pp. 441–450.
38.
Porstendörfer
,
J.
,
Wicke
,
A.
, and
Schraub
,
A.
, “
The Influence of Exhalation, Ventilation and Deposition Processes Upon the Concentration of Radon (222Rn), Thoron (220Rn) and Their Decay Products in Room Air
,”
Health Physics
 0017-9078, Vol.
34
,
1978
, pp. 465–473.
39.
James
,
A. C.
, “
Lung Dosimetry
,”
Radon and Its Decay Products in Indoor Air
,
Nazaroff
W. W.
and
Nero
A. V.
, Eds.,
Wiley
,
New York
,
1988
, pp. 259–309.
40.
McLaughlin
,
J. P.
, and
O'Byrne
,
F. D.
, “
The Role of Daughter Product Plateout in Passive Radon Detection
,”
Radiation Protection Dosimetry
, Vol.
7
,
1984
, pp. 115–119.
41.
Bigu
,
J.
, “
Radon Daughter and Thoron Daughter Deposition Velocity and Unattached Fraction Under Laboratory-Controlled Conditions and in Underground Uranium Mines
,”
Journal of Aerosol Science
, Vol.
16
,
1985
, pp. 157–165.
42.
Cox
,
R. A.
, and
Penkett
,
S. A.
, “
Effect of Relative Humidity on the Disappearance of Ozone and Sulphur Dioxide in Contained Systems
,”
Atmospheric Environment
 1352-2310, Vol.
6
,
1972
, pp. 365–368.
43.
Scott
,
A. G.
, “
Radon Daughter Deposition Velocities Estimated from Field Measurements
,”
Health Physics
 0017-9078, Vol.
45
,
1983
, pp. 481–485.
44.
Gadgil
,
A. J.
,
Kong
,
D.
, and
Nazaroff
,
W. W.
, “
Deposition of Unattached 218Po and 212Pb under Natural Convection How in Enclosures: A Numerical Investigation
,” submitted to
Radiation Protection Dosimetry
,
1992
.
45.
Thompson
,
C. R.
,
Hensel
,
E. G.
,
Kats
,
G.
, “
Outdoor-Indoor Levels of Six Air Pollutants
,”
Journal of the Air Pollution Control Association
 0002-2470, Vol.
23
,
1973
, pp. 881–886.
46.
Shair
,
F. H.
, and
Heitner
,
K. L.
, “
Theoretical Model for Relating Indoor Pollutant Concentrations to Those Outside
,”
Environmental Science and Technology
 0013-936X, Vol.
8
,
1974
, pp. 444–451.
47.
Nazaroff
,
W. W.
, and
Cass
,
G. R.
, “
Mathematical Modeling of Chemically Reactive Pollutants in Indoor Air
,”
Environmental Science and Technology
 0013-936X, Vol.
20
,
1986
, pp. 924–934.
48.
Weschler
,
C. J.
,
Shields
,
H. C.
,
Naik
,
D. V.
, “
Indoor Ozone: Recent Findings
,”
Tropospheric Ozone and the Environment II: Effects, Modeling and Control
,
Air and Waste Management Association
,
Pittsburgh, PA
,
1992
, in press.
49.
Ryan
,
P. B.
,
Koutrakis
,
P.
,
Bamford
,
S.
Reiss
,
R.
, “
Ozone Reactive Chemistry in Indoor Microenvironments: Effects on Exposure
,” in
Tropospheric Ozone and the Environment II: Effects, Modeling and Control
,
Air and Waste Management Association
,
Pittsburgh, PA
,
1992
, in press.
50.
Walker
,
M. V.
, and
Weschler
,
C. J.
, “
Water-Soluble Components of Size-Fractionated Aerosols Collected After Hours in a Modern Office Building
,”
Environmental Science and Technology
 0013-936X, Vol.
14
,
1980
, pp. 594–597.
51.
Gray
,
H. A.
,
Cass
,
G. R.
,
Huntzicker
,
J. J.
,
Heyerdahl
,
E. K.
,
Rau
,
J. A.
, “
Characteristics of Atmospheric Organic and Elemental Carbon Particle Concentrations in Los Angeles
,”
Environmental Science and Technology
 0013-936X, Vol.
20
,
1986
, pp. 580–589.
52.
Wexler
,
A. S.
, and
Seinfeld
,
J. H.
, “
Second-Generation Inorganic Aerosol Model
,”
Atmospheric Environment
 1352-2310, Vol.
25A
,
1991
, pp. 2731–2748.
53.
Sehested
,
K.
,
Corfitzen
,
H.
,
Holeman
,
J.
,
Fischer
,
C. H.
,
Hart
,
E. J.
, “
The Primary Reaction in the Decomposition of Ozone in Acidic Aqueous Solutions
,”
Environmental Science and Technology
 0013-936X, Vol.
25
,
1991
, pp. 1589–1596.
54.
Wade
,
W. A.
, III
,
Cote
,
W. A.
, and
Yocum
,
J. E.
, “
A Study of Indoor Air Quality
,”
Journal of the Air Pollution Control Association
 0002-2470, Vol.
25
,
1975
, pp. 933–939.
55.
Özkaynak
,
H.
,
Ryan
,
P. B.
,
Allen
,
G. A.
, and
Turner
,
W. A.
, “
Indoor Air Quality Modeling: Compartmental Approach with Reactive Chemistry
,”
Environmental International
 0160-4120, Vol.
8
,
1982
, pp. 461–471.
56.
Traynor
,
G. W.
,
Apte
,
M. G.
,
Dillworth
,
J. F.
,
Hollowell
,
C. D.
, and
Sterling
,
E. M.
, “
The Effects of Ventilation on Residential Air Pollution Due to Emissions from a Gas-Fired Range
,”
Environment International
 0160-4120, Vol.
8
,
1982
, pp. 447–452.
57.
Yamanaka
,
S.
, “
Decay Rates of Nitrogen Oxides in a Typical Japanese Living Room
,”
Environmental Science and Technology
 0013-936X, Vol.
18
,
1984
, pp. 566–570.
58.
Traynor
,
G. W.
,
Girman
,
J. R.
,
Apte
,
M G.
,
Dillworth
,
J. F.
, and
White
,
P. D.
, “
Indoor Air Pollution Due to Emissions from Unvented Gas-Fired Space Heaters
,”
Journal of the Air Pollution Control Association
, Vol.
35
,
1985
, pp. 231–237.
59.
Spicer
,
C. W.
,
Coutant
,
R. W.
,
Ward
,
G. F.
,
Joseph
,
D. W.
,
Gaynor
,
A. J.
, and
Billick
,
I. H.
, “
Rates and Mechanisms of NO2 Removal from Indoor Air by Residential Materials
,”
Environmental International
 0160-4120, Vol.
15
,
1989
, pp. 643–654.
60.
Miyazaki
,
T.
, “
Adsorption Characteristics of NOx by Several Kinds of Interior Materials
,”
INDOOR AIR: Chemical Characterization and Personal Exposure
, Vol.
4
,
Berglund
B.
,
Lindvall
T.
and
Sundell
J.
, Eds.,
Swedish Council for Building Research
,
Stockholm
,
1984
, pp. 103–110.
61.
Pitts
,
J. N.
, Jr.
,
Wallington
,
T. J.
,
Biermann
,
H. W.
, and
Winer
,
A. M.
, “
Identification and Measurement of Nitrous Acid in an Indoor Environment
,”
Atmospheric Environment
 1352-2310, Vol.
19
,
1985
, pp. 763–767.
62.
Febo
,
A.
, and
Perrino
,
C.
, “
Prediction and Experimental Evidence for High Air Concentration of Nitrous Acid in Indoor Environments
,”
Atmospheric Environment
 1352-2310, Vol.
25A
,
1991
, pp. 1055–1061.
63.
Salmon
,
L. G.
,
Nazaroff
,
W. W.
,
Ligocki
,
M. P.
,
Jones
,
M. C.
, and
Cass
,
G. R.
, “
Nitric Acid Concentrations in Southern California
,”
Environmental Science and Technology
 0013-936X, Vol.
24
,
1991
, pp. 1004–1013.
64.
Fisk
,
W. J.
,
Faulkner
,
D.
, and
Prill
,
R. J.
, “
Air Exchange Effectiveness of Conventional and Task Ventilation for Offices
,” report LBL-31652,
Lawrence Berkeley Laboratory
, Berkeley, CA,
12
1991
.
65.
Nazaroff
,
W. W.
, and
Cass
,
G. R.
, “
Particle Deposition from a Natural Convection Flow onto a Vertical Isothermal Flat Plate
,”
Journal of Aerosol Science
, Vol.
18
,
1987
, pp. 445–455.
66.
Abel
,
W. A.
, “
Destruction of Ozone
,” report ASHRAE RP169,
American Society of Heating, Refrigeration and Air-Conditioning Engineers
, Atlanta,
1976
, pp. 38.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal