Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Thermomechanical Fatigue Behavior of Materials
By
H Sehitoglu
H Sehitoglu
1
Symposium chairperson and editor
;
University of Illinois
,
Urbana, Ill
.
Search for other works by this author on:
ISBN-10:
0-8031-1871-6
ISBN:
978-0-8031-1871-3
No. of Pages:
259
Publisher:
ASTM International
Publication date:
1993

A recently developed cumulative creep-fatigue damage model is applied to the prediction of thermomechanical and isothermal cumulative creep-fatigue loading histories. The model utilizes damage curve expressions to describe cumulative damage evolution under creep-fatigue conditions, qualitatively grouped according to dominant damage mechanism or mode. The damage coupling concept of McGaw is employed to describe the cumulative interaction among different mechanisms and modes. In this study, experiments consisting of two-level loadings of thermomechanical fatigue (both in-phase and out-of-phase) followed by isothermal fatigue to failure, were conducted on 316 stainless steel. It was found that the model gave good predictions for the out-of-phase two-level tests and provided reasonable bounds for the in-phase two-level tests.

1.
Halford
,
G. R.
, “
Low-Cycle Thermal Fatigue
,”
Thermal Stresses II
,
Hetnarski
R. B.
, Ed.,
Elsevier Science Publishers B.V.
,
1987
.
2.
Palmgren
,
A.
, “
Die Lebensdauer von Kugellargen
,”
Verfahrenstechinik
(
Berlin
), Vol.
68
,
1924
, pp. 339–341.
3.
Langer
,
B. F.
, “
Fatigue Failure from Stress Cycles of Varying Amplitude
,”
Journal of Applied Mechanics
 0021-8936, Vol.
59
,
1937
, pp. A160–A162.
4.
Miner
,
M. A.
, “
Cumulative Damage in Fatigue
,”
Journal of Applied Mechanics
 0021-8936, Vol.
67
,
1945
, pp. A159–A164.
5.
Neu
,
R. W.
and
Sehitoglu
,
H.
, “
Thermomechanical Fatigue, Oxidation and Creep: Part II Life Prediction
,”
Metal Transactions
, Vol.
20A
,
1989
, pp. 1769–1783.
6.
Saltsman
,
J. F.
and
Halford
,
G. R.
, “
Life Prediction of Thermomechanical Fatigue Using Total Strain Version of Strainrange Partitioning (SRP)—A Proposal
,” NASA TP-2779,
1988
.
7.
LeMaitre
,
J.
and
Chaboche
,
J. L.
, “
A Non-Linear Model of Creep-Fatigue Cumulation and Interaction
,”
Office National D'Etudes et de Recherches Aerospatiales
, T.P. No. 1934,
1974
.
8.
Chaboche
,
J. L.
, “
Thermodynamic and Phenomenological Description of Cyclic Viscoplasticity With Damage
,” ESA-TT-548,
1979
.
9.
Manson
,
S. S.
,
Halford
,
G. R.
, and
Hirschberg
,
M. H.
,“
Creep Fatigue Analysis by StrainRange Partitioning
,”
Proceedings
, First Symposium on Design for Elevated Temperature Environment,
San Francisco, CA
,
1971
, pp. 12–24, disc. pp. 25–28.
10.
Manson
,
S. S.
, “
The Challenge to Unify Treatment of High Temperature Fatigue—A Partisan Proposal Based on StrainRange Partitioning
,”
Fatigue at Elevated Temperatures
, ASTM STP 520,
American Society for Testing and Materials
,
1973
, pp. 744–782.
11.
Halford
,
G. R.
,
McGaw
,
M. A.
,
Bill
,
R. C.
, and
Fanti
,
P. D.
, “
Bithermal Fatigue: A Link Between Isothermal and Thermomechanical Fatigue
,”
Low Cycle Fatigue
, ASTM STP 942,
Solomon
H. D.
,
Halford
G. R.
,
Kaisand
L. R.
, and
Leis
B. N.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1988
, pp. 625–637.
12.
Castelli
,
M. G.
,
Miner
,
R. V.
, and
Robinson
,
D. N.
, “
Thermomechanical Deformation Behavior of a Dynamic Strain Aging Alloy, Hastelloy X
,” appearing elsewhere in this volume.
13.
Halford
,
G. R.
,
Hirschberg
,
M. H.
, and
Manson
,
S. S.
, “
Temperature Effects on the Strainrange Partitioning Approach for Creep Fatigue Analysis
,”
Fatigue at Elevated Temperatures
, ASTM STP 520,
American Society for Testing and Materials
,
Philadelphia
,
1973
, pp. 658–669.
14.
Halford
,
G. R.
and
Manson
,
S. S.
, “
Life Prediction of Thermal-Mechanical Fatigue Using Strain-range Partitioning
,”
Thermal Fatigue of Materials and Components
, ASTM STP 612,
Spera
D. A.
and
Mowbray
D. F.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1976
, pp. 239–254.
15.
McGaw
,
M. A.
, “
Modeling and Identification of Cumulative Creep-Fatigue Damage in an Austenitic Stainless Steel
,” Ph.D. Dissertation,
Case Western Reserve University
,
1990
.
16.
McGaw
,
M. A.
, “
Cumulative Creep-Fatigue Damage Evolution in an Austenitic Stainless Steel
,”
Advances in Fatigue Lifetime Predictive Techniques
, ASTM STP 1122,
American Society for Testing and Materials
,
Philadelphia
,
1991
.
17.
McGaw
,
M. A.
and
Bonacuse
,
P. J.
, “
Automation Software for a Materials Testing Laboratory
,” ASTM STP 1092,
American Society for Testing and Materials
,
Philadelphia
,
1990
, pp. 211–231.
18.
Jaske
,
C. E.
and
Frey
,
N. D.
, “
Long-Life Fatigue of Type 316 Stainless Steel of Temperatures Up to 593°C
,”ASME 81-MAT-2,
1981
.
19.
Manson
,
S. S.
,
Halford
,
G. R.
, and
Oldrieve
,
R. E.
, “
Relation of Cyclic Loading Pattern to Microstructural Fracture in Creep Fatigue
,” Second International Conference on Fatigue and Fatigue Thresholds,
Birmingham, England
; also NASA TM-83473,
1984
.
20.
Manson
,
S. S.
and
Halford
,
G. R.
, “
Practical Implementation of the Double Linear Damage Rule and Damage Curve Approach for Treating Cumulative Fatigue Damage
,”
International Journal of Fracture
, Vol.
17
,
1981
, pp. 169–192.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal