Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Skiing Trauma and Safety: Ninth International Symposium
By
RJ Johnson
RJ Johnson
1
University of Vermont
?
Burlington, VT
;
editor
Search for other works by this author on:
CD Mote, Jr Jr
CD Mote, Jr Jr
2
University of California
?
Berkeley, CA
;
editor
Search for other works by this author on:
J Zelcer
J Zelcer
3
St. Vincent's Hospital
?
East Melbourne Victoria,
Australia
;
editor
Search for other works by this author on:
ISBN-10:
0-8031-1494-X
ISBN:
978-0-8031-1494-4
No. of Pages:
283
Publisher:
ASTM International
Publication date:
1993

The contributions of this paper are twofold. One is measurement of loads and corresponding strains at failure in both the anterior cruciate (ACL) and medial collateral (MCL) ligaments of the knee, the two ligaments most commonly injured. To make these measurements, a five degree-of-freedom automated system was used to apply either a single load or a combination of two loads at flexion angles ranging from 0° to 45°. Approximately half of the specimens were loaded to fail the ACL and half the MCL. An anterior force consistently failed the ACL while a valgus moment and/or an external axial moment failed the MCL. Despite this consistency, there was wide variation in failure loads between specimens with more than a twofold difference in load levels. Also, there was a large variation in ligament strain at failure with a mean value of 6.7% and a coefficient of variation of 0.64.

The second contribution of this paper is the development and testing of empirical models to predict ligament failure. To provide data for these models, prior to the load-to-failure tests of the knee specimens, the load application system was used to apply sub-injury level loads corresponding to varus/valgus moments, axial moments, medial/lateral forces, anterior/posterior forces, and compressive force at flexion angles of 0°, 15°, and 30° for single loads and 0° and 30° for combination loads. Regression analysis was performed to determine empirical equations relating strain to both load and flexion angle. The ability to extrapolate these models to predict strain measured in the load-to-failure tests was evaluated. In general, the empirical models did not accurately predict strain at injurious load levels. The inability to make an accurate prediction was traced to the conservative sub-injury load levels used to develop the empirical models.

1.
Kuriyama
,
S.
and
Fujimaki
,
E.
, “
Current Trends in Ski Injuries and Their Relationship to Recent Changes in Ski Equipment
,” in
Skiing Trauma and Safety: STP 938
,
Mote
,
C. D.
 Jr.
and
Johnson
R. J.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1987
, pp. 263–270.
2.
Johnson
,
R. J.
,
Ettlinger
,
C. F.
, and
Shealy
,
J. E.
, “
Skier Injury Trends
,”
Skiing Trauma and Safety: STP 1022
,
Johnson
R. J.
,
Mote
,
C. D.
 Jr.
, and
Binet
M. H.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1987
, pp. 25–31.
3.
Lystad
,
H.
, “
A Five-Year Survey of Skiing Injuries in Hemsedal, Norway
,” in
Skiing Trauma and Safety, STP 1022
,
Johnson
R. J.
,
Mote
,
C. D.
 Jr.
, and
Binet
M. H.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1989
, pp. 32–40.
4.
Ekelund
,
A.
,
Holtmoen
,
A.
, and
Lystad
,
H.
, “
Skiing Injuries in Alpine Recreational Skiers
,” in
Skiing Trauma and Safety: STP 1022
,
Johnson
R. J.
,
Mote
,
C. D.
 Jr.
, and
Binet
M. H.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1989
, pp. 41–50.
5.
Brown
,
C. A.
and
Ettinger
,
C. F.
, “
A Method for Improvement of Retention Characteristics in Alpine Ski Bindings
,” in
Skiing Trauma and Safety: STP 860
,
Johnson
R. J.
and
Mote
,
C. D.
 Jr.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1985
, pp. 224–237.
6.
Wunderly
,
G. S.
and
Hull
,
M. L.
A Biomechanical Approach to Alpine Ski Binding Design
,”
International Journal of Sport Biomechanics
, Vol.
5
,
1989
, pp. 308–323.
7.
Cabaud
,
H. E.
, “
Biomechanics of the Anterior Cruciate Ligament
,”
Clinical Orthopedics and Related Research
 0009-921X, Vol.
172
,
1983
, pp. 27–31.
8.
Hseih
,
H.
and
Walker
,
P. S.
, “
Stabilizing Mechanisms of the Loaded and Unloaded Knee Joint
,”
Journal of Bone and Joint Surgery
, Vol.
58A
,
1976
, pp. 87–93.
9.
Shoemaker
,
S. C.
and
Markolf
,
K. L.
, “
Effects of Joint Load on the Stiffness and Laxity of Ligament Deficient Knees: An In Vitro Study of the Anterior Cruciate and Medial Collateral Ligaments
,”
Journal of Bone and Joint Surgery
, Vol.
67A
,
1985
, pp. 136–146.
10.
Renstrom
,
P.
,
Arms
,
S. W.
,
Stanwyck
,
T. S.
,
Johnson
,
R. J.
, and
Pope
,
M. H.
Strain Within the Anterior Cruciate Ligament During Hamstring and Quadriceps Activity
,”
American Journal of Sport Medicine
 0363-5465, Vol.
14
,
1986
, pp. 83–87.
11.
Meglan
,
D.
,
Berme
,
N.
, and
Zuelzer
,
W.
The Effect of Casting and Cast Bracing on Anterior Cruciate Ligament Strain
,” in
Advances in Bioengineering
,
Erdman
A. G.
, Ed.
American Society of Mechanical Engineers
,
New York
,
1987
, pp. 37–39.
12.
Noyes
,
F. R.
,
DeLucas
,
J. L.
, and
Torvik
,
P. J.
Biomechanics of Anterior Cruciate Ligament Failure: An Analysis of Strain Rate Sensitivity and Mechanisms of Failure in Primates
,”
Journal of Bone and Joint Surgery
, Vol.
56-A
,
1974
, pp. 236–253.
13.
Berns
,
G. S.
,
Hull
,
M. L.
, and
Patterson
,
H. A.
, “
Implementation of a Five Degree of Freedom Automated System to Determine Knee Flexibility in Vitro
,”
Journal of Biomechanical Engineering
, Vol.
112
,
1990
, pp. 392–400.
14.
Berns
,
G. S.
,
Hull
,
M. L.
, and
Patterson
,
H. A.
, “
A Five Degree of Freedom Automated System to Determine Knee Flexibility in vitro
,” to
appear in Skiing Trauma and Safety: STP 1104
,
Mote
,
C. D.
 Jr.
, and
Johnson
R. J.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1991
, pp. 57–76.
15.
Grood
,
E. S.
and
Suntay
,
W. J.
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
Journal of Biomechanical Engineering
, Vol.
105
,
1983
, pp. 136–144.
16.
Meglan
,
D.
,
Berme
,
N.
, and
Zuelzer
,
W.
On the Construction, Circuitry and Properties of Liquid Metal Strain Gages
,”
Journal of Biomechanics
, Vol.
21
,
1988
, pp. 681–685.
17.
Pope
,
M. H.
The Biomechanics of Tibial Shaft and Knee Injuries
,”
Clinics in Sports Medicine
 0278-5919, Vol.
1
,
1982
, pp. 229–239.
18.
Howe
,
J.
and
Johnson
,
R. J.
, “
Knee Injuries in Skiing
,”
Orthopedic Clinics of North America
, Vol.
16
,
1985
, pp. 303–314.
19.
Shino
,
K.
,
Horibe
,
S.
,
Nagano
,
J.
, and
Ono
,
K.
, “
Injury of the Anterior Cruciate Ligament of the Knee in Downhill Skiing: Its Pathomechanism and Treatment
,” in
Skiing Trauma and Skiing Safety: STP 938
,
Mote
,
C. D.
 Jr.
and
Johnson
R. J.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1987
, pp. 68–76.
20.
Figueras
,
J. M.
,
Escalas
,
F
,
Vidal
,
A.
,
Morgenstern
,
R.
,
Bulo
,
J. M.
,
Merino
,
J. A.
, and
Espadaler-Gamisans
,
J. M.
The Anterior Cruciate Ligament Injury in Skiers
,” in
Skiing Trauma and Safety: STP 938
,
Mote
,
C. D.
 Jr.
and
Johnson
R. J.
Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1987
, pp. 55–60.
21.
Bally
,
A.
,
Boreiko
,
M.
,
Bonjour
,
F.
, and
Brown
,
C. A.
, “
Modelling Forces on the Anterior Cruciate Ligament During Backward Falls While Skiing
,” in
Skiing Trauma and Safety: STP 1022
,
Johnson
R. J.
,
Mote
,
C. D.
 Jr.
, and
Binet
M. H.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1989
, pp. 267–276.
22.
Ettlinger
,
C.
, “
What Can Be Done About Knee Injuries?
Skiing
,
1989
, pp. 85–87.
23.
Markolf
,
K. L.
,
Gorek
,
J. F
,
Kabo
,
M.
, and
Shapiro
,
M. S.
, “
Direct Measurement of Resultant Forces in the Anterior Cruciate Ligament
,”
Journal of Bone and Joint Surgery
, Vol.
72-A
,
1990
, pp. 557–567.
24.
Edwards
,
R. G.
,
Lafferty
,
J. F
, and
Lange
,
K. D.
Ligament Strains in the Human Knee Joint
,”
Journal of Basic Engineering
 0021-9223, Vol.
92
,
1970
, pp. 131–136.
25.
White
,
A. A.
and
Raphael
,
I. G.
The Effect of Quadriceps Loads and Knee Positions on Strain Measurements of the Tibial Collateral Ligament
,”
Acta Orthopedica Scandinavia
 0001-6470, Vol.
43
,
1972
, pp. 176–187.
26.
Arms
,
S.
,
Boyle
,
J.
,
Johnson
,
R.
, and
Pope
,
M.
, “
Strain Measurement in the Medial Collateral Ligament of the Human Knee: An Autopsy Study
,”
Journal of Biomechanics
, Vol.
16
,
1983
, pp. 491–496.
27.
Monahan
,
J. J.
,
Grigg
,
P.
,
Pappas
,
M. M.
,
Leclair
,
W. J.
,
Marks
,
T.
,
Fowler
,
D. P.
, and
Sullivan
,
T. J.
In Vivo Strain Patterns in the Four Major Canine Ligaments
,”
Journal of Orthopedic Research
, Vol.
2
,
1984
, pp. 408–418.
28.
Arms
,
S. W.
,
Pope
,
M. H.
,
Renstrom
,
P.
, and
Johnson
,
R. J.
, “
The Determination of Zero Strain Within the Anteromedial Fibers of the Anterior Cruciate Ligament
,”
Transactions of Orthopedic Research Society
,
1986
.
29.
Hawkins
,
D. A.
,
Gomez
,
M. A.
, and
Woo
,
S. L. Y.
An Indirect Method to Determine Ligament Stresses in situ
,”
Advances in Bioengineering
,
Lantz
S. A.
and
King
A. I.
, Eds.,
American Society of Mechanical Engineers
,
New York
,
1986
, pp.166–167.
30.
Meglan
,
D.
,
Berme
,
N.
,
Zuelzer
,
W.
, and
Colvin
,
J.
, “
Direct Measurement of Anterior Cruciate Ligament Lengthening Due to External Loads
,” In
Advances in Bioengineering
,
Lantz
S. A.
and
King
A. I.
, Eds.,
American Society of Mechanical Engineers
,
New York
,
1986
, pp. 170–171.
31.
Fung
,
Y. C.
, “
Elasticity of Soft Tissues in Simple Elongation
,”
American Journal of Physiology
 0002-9505, Vol.
213
,
1967
, pp. 1532–1544.
32.
Viidik
,
A.
,
Sandquist
,
L.
, and
Magi
,
M.
, “
Influence of Postmortem Storage on Tensile Strength Characteristics and Histology of Rabbit Ligaments
,”
Acta Orthopedica Scandinavia
 0001-6470, Sup.
79
,
1965
.
33.
Woo
,
S. L. Y.
Mechanical Properties of Tendons and Ligaments
,”
Biorheology
 0006-355X, Vol.
19
,
1982
, pp. 385–396.
34.
Arms
,
S. W.
,
Pope
,
M. H.
,
Johnson
,
R. J.
,
Fischer
,
R. A.
,
Arvidsson
,
I.
, and
Erriksson
,
E.
, “
The Biomechanics of Anterior Cruciate Ligament Rehabilitation and Reconstruciton
,”
American Journal of Sports Medicine
 0363-5465, Vol.
12
,
1984
, pp. 8–18.
35.
Hefzy
,
M. S.
and
Grood
,
E. S.
, “
Sensitivity of Insertion Locations on Length Patterns of Anterior Cruciate Fibers
,”
Journal of Biomechancial Engineering
, Vol.
108
,
1986
, pp. 73–82.
36.
Noyes
,
F. R.
and
Grood
,
E. S.
, “
The Strength of the Anterior Cruciate Ligament in Humans and Rhesus Monkeys
,”
Journal of Bone and Joint Surgery
, Vol.
58-A
,
1976
, pp. 1074–1082.
37.
Norwood
,
L. A.
, and
Cross
,
M. J.
, “
Anterior Cruciate Ligament: Functional Anatomy of Its Bundles in Rotary Instability
,”
American Journal of Sports Medicine
 0363-5465, Vol.
7
,
1979
, pp. 23–26.
38.
Wang
,
C. J.
,
Walker
,
P. S.
, and
Wolf
,
B.
, “
The Effects of Flexion and Rotation on the Length Patterns of the Ligaments of the Knee
,”
Journal of Biomechanics
, Vol.
6
,
1973
, pp. 587–596.
39.
Crowninshield
,
R.
,
Pope
,
M. H.
, and
Johnson
,
R. J.
An Analytical Model of the Knee
,”
Journal of Biomechanics
, Vol.
9
,
1976
, pp. 397–405.
40.
Sidles
,
J. A.
,
Larson
,
R. V.
,
Garbini
,
J. L.
,
Downey
,
D. J.
, and
Matsen
,
F. A.
Ligament Length Relationships in the Moving Knee
,”
Journal of Orthopedic Research
, Vol.
6
,
1988
, pp. 593–610.
41.
Dye
,
S. F.
and
Cannon
,
W. D.
, “
Anatomy and Biomechanics of the Anterior Cruciate Ligament
,”
Clinics in Sports Medicine
 0278-5919, Vol.
7
,
1988
, pp. 715–25.
42.
Hollis
,
J. M.
,
Horibe
,
S.
,
Adams
,
D. J.
,
Marvin
,
J. R.
, and
Woo
,
S. L. Y.
Force Distribution in the Anterior Cruciate Ligament as a Function of Flexion Angles
,”
Proceedings ASME Biomechanics Symposium
,
Torzilli
P. A.
and
Friedman
M. H.
, Eds.,
American Society of Mechanical Engineers
,
New York, NY
,
1989
, pp. 41–44.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal