Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Effects of Radiation on Materials: 15th International Symposium
By
RE Stoller
RE Stoller
1
Oak Ridge National Laboratory
,
Oak Ridge, Tennessee
;
chairman and editor
Search for other works by this author on:
AS Kumar
AS Kumar
2
University of Missouri-Rolla
,
Rolla, Missouri
;
cochairman and editor
Search for other works by this author on:
DS Gelles
DS Gelles
3
Battelle Pacific Northwest Laboratory
,
Richland, Washington
;
cochairman and editor
Search for other works by this author on:
ISBN-10:
0-8031-1477-X
ISBN:
978-0-8031-1477-7
No. of Pages:
1339
Publisher:
ASTM International
Publication date:
1992

The literature on radiation-induced swelling and hardening in copper and its alloys is reviewed. Void formation does not occur during irradiation of copper unless suitable impurity atoms such as oxygen or helium are present. Void formation occurs for neutron irradiation temperatures of 180 to 550°C, with peak swelling occurring at ˜320°C for irradiation at a damage rate of 2 × 10-7 dpa/s. The posttransient swelling rate has been measured to be ˜0.5%/dpa at temperatures near 400°C. Dispersion-strengthened copper has been found to be very resistant to void swelling due to the high sink density associated with the dispersion-stabilized dislocation structure.

Irradiation of copper at temperatures below 400°C generally causes an increase in strength due to the formation of defect clusters which inhibit dislocation motion. The radiation hardening can be adequately described by Seeger's dispersed barrier model, with a barrier strength for small defect clusters of α ≈0.2. The radiation hardening apparently saturates for fluences greater than ˜ 1024 n/m2 (˜0.1 dpa) during irradiation at room temperature due to a saturation of the defect cluster density. Grain boundaries can modify the hardening behavior by blocking the transmission of dislocation slip bands, leading to a radiation-modified Hall-Petch relation between yield strength and grain size. Radiation-enhanced recrystallization can lead to softening of cold-worked copper alloys at temperatures above 300°C.

1.
Zinkle
,
S. J.
and
Knoll
,
R. W.
, “
A Literature Review of Radiation Damage Data for Copper and Copper Alloys
,” University of Wisconsin Fusion Technology Institute Report UWFDM-578,
University of Wisconsin
,
06
1984
.
2.
Corbett
,
J. W.
,
Electron Radiation Damage in Semiconductors and Metals
, Solid State Physics Supplement 7,
Academic Press
,
New York
,
1966
.
3.
Adda
,
Y.
,
Beyeler
,
M
, and
Brebec
,
G.
,
Thin Solid Films
 0040-6090, Vol.
25
,
1975
, pp. 107–156.
4.
Russell
,
K. C.
, “
Phase Stability under Irradiation
,”
Progress in Material Science
, Vol.
28
, No.
3–4
,
1985
, pp. 229–434.
5.
Buckley
,
S. N.
, “
Irradiation Growth and Irradiation Enhanced Creep in FCC and BCC Metals
,” in
Proceedings
, Symposium on The Interactions Between Dislocations and Point Defects, Vol.
II
, Part III, AERE-R5944,
1968
,
Harwell, Berkshire, England
, pp. 547–565.
6.
Jung
,
P.
and
Ansari
,
M. I.
, “
A Correlation Between Irradiation Creep Strength and Yield Stress of FCC Metals and Alloys
,”
Journal of Nuclear Materials
, Vol.
138
,
1986
, pp. 40–45.
7.
Ibragimov
,
S. S.
,
Aitkhozhin
,
E. S.
, and
Pyatiletov
,
Y. S.
, “
Radiation-Induced Creep of Aluminum and Copper
,”
Influence of Radiation on Material Properties: 13th International Symposium (Part II)
, ASTMSTP 956,
Garner
F. A.
et al, Eds.,
ASTM
,
Philadelphia
,
1987
, pp. 5–10.
8.
Adamson
,
R. B.
, “
Some Effects of Proton, Electron, and Neutron Irradiation on the Fatigue Properties of Copper Single Crystals
,”
Transactions ofTMS-AIME
, Vol.
239
,
1967
, pp. 714–720.
9.
Strible
,
F. C.
and
Cady
,
J. R.
, “
Internal Friction in Copper Subjected to Neutron Irradiation andFatigue
,”
Journal of Applied Physics
, Vol.
43
,
1972
, pp. 417–424.
10.
Brimhall
,
J. L.
,
Kissinger
,
H. E.
, and
Kulcinski
,
G. L.
in
Radiation-Induced Voids in Metals
,
Corbett
J. W.
and
lanniello
L. C.
, Eds., U.S. Atomic Energy Commission Symposium Series No. 26, CONF-710601,
1972
, pp. 338–362.
11.
Wolfenden
,
A.
, “
High Fluence Neutron Irradiation Damage in Copper-10wt% Aluminum and Copper
,”
Radiation Effects
, Vol.
15
,
1972
, pp. 255–258.
12.
Vandermeulen
,
W.
,
Massaut
,
V.
,
Van de Velde
J.
, and
Hendrix
,
W.
, “
The Effect of Irradiation at 150 and 300°C on the Tensile Properties of Cu and CuCrZr
,”
Proceedings
, 14th Symposium on Fusion Technology, September 1986, Avignon, France, Commission of European Communities,
Pergamon Press
,
Elmsford, New York
,
1986
, pp. 1031–1035.
13.
Livak
,
R. J.
,
Frost
,
H. M.
,
Zocco
,
T. G.
,
Kennedy
,
J. C.
, and
Hobbs
,
L. W.
, “
Promising Copper Alloys for High Heat Load Applications in Neutron Environments
,”
Journal of Nuclear Materials
, Vols.
141–143
,
1987
, pp. 160–162.
14.
Livak
,
R. J.
,
Zocco
,
T. G.
, and
Hobbs
,
L. W.
, “
Neutron Damage Microstructures on High-Conductivity Copper Alloys
,”
Journal of Nuclear Materials
, Vol.
144
,
1987
, pp. 121–127.
15.
Harling
,
O. K.
,
Grant
,
N. J.
,
Kohse
,
G.
,
Ames
,
M.
,
Lee
,
T S.
, and
Hobbs
,
L. W.
, “
Neutron Irradiation Scoping Study of Twenty-Five Copper-Base Materials
,”
Journal of Materials Research
 0884-2914, Vol.
2
,
1987
, pp. 568–579.
16.
Brager
,
H. R.
and
Garner
,
F. A.
, “
Effects of Neutron Irradiation to 98 dpa on the Swelling of Various Copper Alloys
,”
Effects of Radiation on Materials: 14th International Symposium
(Vol.
II
), ASTMSTP1046,
Packan
N.> H.
et al, Eds., ASTM,
Philadelphia
,
1990
, pp. 599–604.
17.
Garner
,
F. A.
,
Brager
,
H. R.
, and
Andersen
,
K. R.
, “
Neutron-Induced Changes in Density and Electrical Conductivity of Copper Alloys at 16 to 98 dpa and 420°C
,”
Journal of Nuclear Materials
, Vols.
179–181
,
1991
, pp. 250–253.
18.
Garner
,
F. A.
,
Brager
,
H. R.
, and
Anderson
,
K. R.
, “
Density Changes of Generation 1.5 and 2.0 Copper Alloys Irradiated at 411-414°C and 529°C in FFTF-MOTA
,” Fusion Reactor Materials Semiannual Progess Report DOE/ER-0313/7,
Department of Energy
, Washington, DC,
30
09
1989
, pp. 223–231.
19.
Anderson
,
K. R.
,
Garner
,
F. A.
,
Hamilton
,
M. L.
, and
Stubbins
,
J. F.
, “
Tensile Properties and Fracture Behavior of Dispersion-Strengthened Copper Alloys Irradiated in FFTF-MOTA
,” Fusion Reactor Materials Semiannual Progress ReportDOE/ER-0313/7,
Department of Energy
, Washington, DC,
30
09
1989
, pp. 213–219.
20.
Anderson
,
K. R.
,
Garner
,
F. A.
,
Hamilton
,
M. L.
, and
Stubbins
,
J. F.
, “
Behavior of Copper-Base High Heat Flux Candidate Alloys During Neutron Irradiation at 412 and 529°C
,” Fusion Reactor Materials Semiannual Progress ReportDOE/ER-0313/6, Department of Energy, Washington, DC,
31
03
1989
, pp. 357–369.
21.
Zinkle
,
S. J.
and
Farrell
,
K.
, “
Void Swelling and Defect Cluster Formation in Reactor-Irradiated Copper
,”
Journal of Nuclear Materials
, Vol.
168
,
1989
, pp. 262–267.
22.
Zinkle
,
S. J.
,
Farrell
,
K.
, and
Kanazawa
,
H.
, “
Microstructure and Cavity Swelling in Reactor-Irradiated Dilute Copper-Boron Alloy
,”
Journal of Nuclear Materials
, Vols.
179–181
,
1991
, pp. 994–997.
23.
Cawthorne
,
C.
and
Fulton
,
E. J.
, “
Voids in Irradiated Stainless Steel
,”
Nature
 0028-0836, Vol.
216
,
1967
, pp. 575–576.
24.
Norris
,
D. I. R.
,
Radiation Effects
, Vol.
15
,
1972
, pp. 1–22.
25.
Adda
,
Y.
in
Radiation-Induced Voids in Metals
,
Corbett
J. W.
and
Ianniello
L. C.
, Eds., U.S. Atomic Energy Commission Symposium Series No. 26, CONF-710601,
1972
, pp. 31–83.
26.
Glowinski
,
L.
,
Fiche
,
C.
, and
Lott
,
M.
,
Journal of Nuclear Materials
, Vol.
47
,
1973
, pp. 295–310.
27.
Glowinski
,
L. D.
,
Journal of Nuclear Materials
, Vol.
61
,
1976
, pp. 8–21.
28.
Glowinski
,
L. D.
and
Fiche
,
C.
,
Journal of Nuclear Materials
, Vol.
61
,
1976
, pp. 29–40.
29.
Felsen
,
M. F.
and
Regnier
,
P.
, “
Influence of Some Additional Elements on the Surface Tension of Copper at Intermediate and High Temperatures
,”
Surface Science
, Vol.
68
,
1977
, pp. 410–418.
30.
Zinkle
,
S. J.
,
Kulcinski
,
G. L.
, and
Knoll
,
R. VS.
,
Journal of Nuclear Materials
, Vol.
138
,
1986
, pp. 46–56.
31.
Zinkle
,
S. J.
and
Lee
,
E. H.
, “
Effect of Oxygen on Vacancy Cluster Morphology in Metals
,”
Metallurgical Transactions A
, Vol.
21A
,
1990
, pp. 1037–1051.
32.
Zinkle
,
S. J.
,
Seitzman
,
L. E.
, and
Wolfer
,
W. G.
, “
Stability of Vacancy Clusters in Metals
,”
Philosophical Magazine A
 1478-6435. Vol.
55
,
1987
, pp. 111–125.
33.
Sabochick
,
M. J.
,
Yip
,
S.
, and
Lam
,
N. Q.
, “
Atomistic Simulation Study of Large Vacancy Clusters in Copper
,”
Journal of Physics F: Metal Physics
, Vol.
18
,
1988
, pp. 349–361.
34.
Kapinos
,
V. G.
,
Osetskii
,
Y. N.
, and
Platonov
,
P. A.
,
Soviet Physics Solid State
, Vol.
28
,
1986
, pp. 2031–2034.
35.
Barlow
,
P.
, “
Radiation Damage in Pure FCC Metals and Alloys in HVEM
,” Ph.D. thesis,
University of Sussex
, England,
1977
.
36.
Mazey
,
D. J.
and
Menzinger
,
F.
,
Journal of Nuclear Materials
, Vol.
48
,
1973
, pp. 15–20.
37.
Zinkle
,
S. J.
, “
Dual-Ion Irradiation of Copper
,” Fusion Reactor Materials Semiannual Progress Report DOE/ER-0313/3,
Department of Energy
, Washington, DC,
30
09
1987
, pp. 86–89.
38.
Vela
,
P.
and
Russell
,
B.
,
Journal of Nuclear Materials
, Vol.
19
,
1966
, p. 327.
39.
Vela
,
P.
,
Hardy
,
J.
, and
Russell
,
B.
, “
The Behavior of Elemental Boron Particles in Copper During Neutron Irradiation
,”
Journal of Nuclear Materials
, Vol.
26
,
1968
, pp. 129–131.
40.
Carpenter
,
G. J. C.
and
Nicholson
,
R. B.
in
Radiation Damage in Reactor Materials
, Vol.
2
,
IAEA
,
Vienna
,
1966
, p. 383.
41.
Barry
,
D. E.
,
Philosophical Magazine
 1478-6435, Vol.
23
,
1971
, p. 495.
42.
Viswanathan
,
B.
,
Amarendra
,
G.
, and
Gopinathan
,
K. P.
, “
Helium Bubbles in Neutron-Irradiated Copper-Boron Studied by Positron Annihilation
,”
Radiation Effects
, Vol.
107
,
1989
, pp. 121–137.
43.
Makin
,
M. J.
in
Voids Formed by Irradiation of Reactor Materials
,
Pugh
S. F.
et al, Eds.,
British Nuclear Engineering Society
,
London
,
1971
, pp. 269–271.
44.
Zinkle
,
S. J.
,
Wolfer
,
W. G.
,
Kulcinski
,
G. L.
, and
Seitzman
,
L. E.
, “
Stability of Vacancy Clusters in Metals II: Effect of Oxygen and Helium on Void Formation in Metals
,”
Philosophical Magazine A
 0031-8086 Vol.
55
,
1987
, pp. 127–140.
45.
Brimhall
,
J. L.
and
Mastel
,
B.
,
Journal of Nuclear Materials
, Vol.
29
,
1969
, pp. 123–125.
46.
Brimhall
,
J. L.
and
Kissinger
,
H. E.
,
Radiation Effects
, Vol.
15
,
1972
, pp. 259–272.
47.
Labbe
,
M.
and
Poirier
,
J. P.
,
Journal of Nuclear Materials
, Vol.
46
,
1973
, pp. 86–98.
48.
Labbe
,
M.
,
Brebec
,
G.
, and
Poirier
,
J. P.
,
Journal of Nuclear Materials
, Vol.
49
, 1973/74, pp. 232–234.
49.
Adamson
,
R. B.
,
Bell
,
W. L.
, and
Kelly
,
P. C.
,
Journal of Nuclear Materials
, Vol.
92
,
1980
, pp.149–154
50.
English
,
C. A.
,
Journal of Nuclear Materials
, Vols.
108–109
,
1982
, pp. 104–123.
51.
English
,
C. A.
,
Eyre
,
B. L.
, and
Muncie
,
J. W.
,
Philosophical Magazine A
 0031-8086, Vol.
56
,
1987
, p. 453.
52.
Eldrup
,
M.
,
Evans
,
J. H.
,
Mogensen
,
O. E.
, and
Singh
,
B. N.
,
Radiation Effects
, Vol.
54
,
1981
, pp.65–80.
53.
Yoshida
,
N.
,
Kitajima
,
K.
, and
Kuramoto
,
E.
,
Journal of Nuclear Materials
, Vols.
122–123
,1984, pp. 664–668.
54.
Singh
,
B. N.
,
Leffers
,
T.
, and
Horsewell
,
A.
,
Philosophical Magazine A
 0031-8086, Vol.
53
,
1986
, p. 233.
55.
Takeyama
,
T.
,
Ohnuki
,
S.
, and
Takahashi
,
H.
,
Journal of Nuclear Materials
, Vol.
89
,
1980
, pp.253–262.
56.
Leffers
,
T.
,
Singh
,
B. N.
,
Buckley
,
S. N.
, and
Manthorpe
,
S. A.
,
Journal of Nuclear Materials
, Vol.
118
,
1983
, pp. 60–67.
57.
Takeyama
,
T.
in
Proceedings
, Conference on New Trends in Atom Resolution, Materials Science and Biology,
Hashimoto
H.
et al, Eds.,
Science Press
,
Beijing, China
,
1982
, pp. 78–86.
58.
Leister
,
K. -H.
, “
Influence of Solutes on Heavy Ion Induced Void Swelling in Binary Copper Alloys
,” Ph.D. thesis, Kernforschungszentrum Karlsruhe Report KfK 3499,
05
1983
.
59.
Venker
,
H.
,
Giesecke
,
P.
, and
Ehrlich
,
K.
, “
The Influence of Fast Diffusing Substitutional Elements on the Swelling Behaviour of Ni and Cu Alloys
,” in
Radiation Effects in Breeder Reactor Structural Materials
,
Bleiberg
M. L.
and
Bennett
J. W.
, Eds., Transactions of TMS-AIME,
1977
, pp. 415–420.
60.
Leffers
,
T.
,
Singh
,
B. N.
, and
Barlow
,
P.
, Research Establishment Rise Report Riso-M-1937, Roskilde, Denmark, May,
1977
;
Singh
,
B. N.
 et al
, in
Proceedings
, 4th Int. Conference on HVEM,
Kyoto, Japan
,
08
1977
, pp. 581–584.
61.
Hashimoto
,
M.
,
Saka
,
H.
,
Suzuki
,
K.
,
Fukai
,
K.
,
Irnura
,
T.
, and
Hishinuma
,
A.
, “
HVEM Study of Void Swelling in Concentrated Ag-base and Cu-base Alloys
,” in
Proceedings
, Xlth International Congress on Electron Microscopy,
Japanese Society of Electron Microscopy
,
Tokyo
,
1986
, pp.1103–1104.
62.
Dworschak
,
F.
,
Lennartz
,
R.
, and
Wollenberger
,
H.
, “
Interstitial Trapping and Detrapping in Electron Irradiated Dilute Copper Alloys
,”
Journal of Physics F: Metal Physics
, Vol.
5
,
1975
, pp. 400–418.
63.
Maury
,
F.
,
Lucasson
,
A.
,
Lucasson
,
P.
,
LeHericy
,
J.
,
Vajda
,
P.
,
Dimitrov
,
C.
, and
Dimitrov
,
O.
,
Radiation Effects
, Vol.
51
,
1980
, pp. 57–68.
64.
Takeyama
,
T.
,
Ohnuki
,
S.
, and
Takahashi
,
H.
,
ScriptaMetallurgica
, Vol.
14
,
1980
, pp. 1105–1110.
65.
Knoll
,
R. W.
, “
Effects of Heavy Ion Irradiation on the Phase Stability of Several Copper-base Alloys
,” Ph.D. thesis,
University of Wisconsin-Madison
,
1981
.
66.
Spitznagel
,
J. A.
,
Doyle
,
N. J.
,
Greggi
,
J. G.
,
Choyke
,
W. J.
,
McGruer
,
J. N.
,
Townsend
,
J. T.
, and
Davis
,
J. W.
, “
Ion Irradiation Effects of High Strength, High Conductivity Copper Alloys
,”
Nuclear Instruments and Methods B
, Vol.
16
,
1986
, pp. 279–287.
67.
Zinkle
,
S. J.
,
Dodd
,
R. A.
, and
Kulcinski
,
G. L.
, “
Ion Irradiation of High Strength, High Conductivity Copper Alloys at Fusion-Relevant Temperatures
,”
Journal of Nuclear Materials
, Vols.
133–134
,
1985
, pp. 680–684.
68.
Brager
,
H. R.
,
Journal of Nuclear Materials
, Vols.
141–143
,
1986
, pp. 163–168.
69.
Barabash
,
V. R.
,
Naberenkov
,
A. V.
,
Nesterova
,
E. V.
,
Rybin
,
V. V.
, and
Fabritsieff
,
S. A.
, “
Study of Copper Alloys Swelling under Heavy Ion Irradiation
,”
Proceedings
, International Conference on Radiation Materials Science,
Institute of Physics and Technology of Ukrainian Academy of Science
,
Kharkov, USSR
, 22–25 May 1990.
70.
Fabritsieff
,
S. A.
,
Rybin
,
V. V.
,
Barabash
,
V. R.
, and
Saksaganskiy
,
G. L.
, “
Structural Materials Divertor: Copper Alloy Properties
,”
Proceedings
, International Thermonuclear Experimental Reactor Specialist Meeting on Materials Data Base, ITER-IL-NE-1-0-2 and -1-0-3,
International Atomic Energy Administration
,
Vienna
,
1990
.
71.
Seeger
,
A. K.
in
Proceedings
,
2nd U.N. Conference on Peaceful Uses of Atomic Energy
, Vol.
6
,
1958
, pp. 250–273.
72.
Blewitt
,
T. H.
,
Coltman
,
R. R.
,
Jamison
,
R. E.
, and
Redman
,
J. K.
,
Journal of Nuclear Materials
, Vol.
2
,
1960
, p. 277.
73.
Rukwied
,
A.
and
Diehl
,
J., Z.
Metallkunde
, Vol.
55
,
1964
, p. 266;
Rukwied
,
A.
,
Diehl
,
J., Z.
Metallkunde
, Vol.
55
,
1964
, p. 146.
74.
Makin
,
M. J.
, “
Radiation Damage in Face Centered Cubic Metals and Alloys
,” in
Radiation Effects
,
Sheely
W. F.
, Ed.,
Gordon and Breach Science Publishers
,
New York
,
1967
, pp. 627–669.
75.
Diehl
,
J.
and
Seidel
,
G. P.
, “
Effect of Alloying and Cold Work on the Neutron Irradiation Hardening of Metals
,” in
Radiation Damage in Reactor Materials
, Vol.
I
,
IAEA
,
Vienna
,
1969
, pp. 187–214.
76.
Makin
,
M. J.
,
Minter
,
F. J.
,and
Manthorpe
,
S. A.
,
Philosophical Magazine
,Vol.
13
,
1966
, pp. 729–739.
77.
Koppenaal
,
T. J.
and
Arsenault
,
R. J.
, “
Neutron-Irradiation Strengthening in FCC Single Crystals
,”
Metallurgical Review
, Vol.
16
,
1971
, pp. 175–196.
78.
Mitchell
,
J. B.
,
Van Konynenburg
,
R. A.
,
Parkin
,
D. M.
, and
Echer
,
C. J.
, “
DT Fusion Neutron Radiation Strengthening of Copper and Niobium
,” in
Radiation Effects and Tritium Technology for Fusion Reactors
, Vol.
II
,
Watson
J. S.
and
Wiffen
F. W.
, Eds., CONF 750989,
1975
, pp. 172–208.
79.
Kojima
,
S.
and
Zinkle
,
S. J.
, “
Radiation Hardening in Neutron Irradiated Polycrystalline Copper
,”
Journal of Nuclear Materials
, Vols.
179–181
,
1991
, pp. 982–985.
80.
Fleischer
,
R. L.
,
Journal of Applied Physics
, Vol.
33
,
1962
, p. 3504.
81.
Zmtte
,
S. J.
and
Kulcinski
,
G. L.
,
Journal of Nuclear Mxaterials
,” Vols.
122–123
,
1984
,pp. 449–454.
82.
Zinkle
,
S. J.
and
Kulcinski
,
G. L.
, “
Low-Load Microhardness Changes in 14-MeV Neutron Irradiated Copper Alloys
,” in
The Use of Small-Scale Specimens for Testing Irradiated Material
, ASTMSTP888,
Corwin
W. R.
and
Lucas
G. E.
, Eds.,
ASTM
,
Philadelphia
,
1986
, pp. 141–160.
83.
Heinisch
,
H. L.
,
Journal of Nuclear Materials
, Vols.
155–157
,
1988
, pp. 121–129; also
>Heinisch
H. L.
 et al
,
Journal of Nuclear Materials
, Vols.
155–157
, pp. 1159–1163.
84.
Zinkle
,
S. J.
,
Journal of Nuclear Materials
, Vol.
150
,
1987
, pp. 140–158.
85.
Makin
,
M. J.
,
Whapham
,
A. D.
, and
Minter
,
F. J.
,
Philosophical Magazine
, Vol.
7
,
1962
, p. 285.
86.
Brager
,
H. R.
,
Garner
,
F. A.
, and
Panayotou
,
N. F.
,
Journal of Nuclear Materials
, Vols.
103–104
,
1981
, pp. 955–959.
87.
Shimomura
,
Y.
,
Yoshida
,
H.
,
Kiritani
,
M.
,
Kitagawa
,
K.
, and
Yamakawa
,
K.
,
Journal of Nuclear Materials
, Vols.
133–134
,
1985
, pp. 385–389.
88.
Yoshida
,
N.
,
Akashi
,
Y.
,
Kitajima
,
K.
, and
Kiritani
,
M.
,
Journal of Nuclear Materials
, Vols.
133–134
,
1985
, pp. 405–409.
89.
Satoh
,
Y.
,
Ishida
,
I.
,
Yoshiie
,
T.
, and
Kiritani
,
M.
,
Journal of Nuclear Materials
, Vols.
155–157
,
1988
, pp. 443–448.
90.
Horsewell
,
A.
,
Singh
,
B. N.
,
Proennecke
,
S.
,
Sommer
,
W.
, and
Heinisch
,
H. L.
, “
Defect Structures in Copper and Gold Irradiated with Fast Neutrons, 14-MeV Neutrons and 600 to 800 MeV Protons
, ”
Journal of Nuclear Materials
, Vols.
179–181
,
1991
, pp. 924–927.
91.
Kiritani
,
M.
,
Material Science Forum
, Vols.
15–18
,
1987
, pp. 1023–1046.
92.
Kiritani
,
M.
,
Journal of Nuclear Materials
, Vols.
155–157
,
1988
, pp. 113–120.
93.
Wilson
,
J. C.
in
Proceedings
,
2nd U.N. International Conference on Peaceful Uses of Atomic Energy
, Vol.
5
,
United Nations
,
Geneva
,
1958
, pp. 431–445.
94.
El-Shanshoury
,
I. A.
,
Journal of Nuclear Materials
, Vol.
45
, 1972/73, pp. 245–257.
95.
Mohamed
,
H. G.
,
Hammad
,
A. M.
, and
Hammad
,
F. H.
,
Transactions of the Indian Institute of Metals
, Vol.
35
, No.
3
,
1982
, pp. 258–262.
96.
Kruglov
,
A. S.
,
Bykov
,
V. N.
,
El-Shanshuri
,
I.
, and
Gabor
,
Kh.
,
Soviet Atomic Energy
, Vol.
26
,
1969
, pp. 582–584.
97.
Szenes
,
G.
,
Havancsak
,
K.
,
Ungar
,
T.
,
Cziraki
,
A.
, and
Schegolev
,
V. A.
,
Journal of Nuclear Mate-rials
, Vols.
155–157
,
1988
, pp. 1089–1092.
98.
Didyk
,
A. Y.
,
Regel
,
V. R.
,
Skuratov
,
V. A.
, and
Mikhailova
,
N. Y.
,
Soviet Physics Technical Physics
, Vol.
34
, No.
5
,
1989
, pp. 563–565.
99.
Adams
,
M. A.
and
Higgins
,
P. R. B.
,
Philosophical Magazine
, Vol.
4
,
1959
, p. 777.
100.
Muncie
,
J. W.
,
Eyre
,
B. L.
, and
English
,
C. A.
,
Philosophical Magazine A
, Vol.
52
,
1985
, pp. 309–331.
101.
English
,
C. A.
,
Eyre
,
B. L.
, and
Summers
,
J.
,
Philosophical Magazine
, Vol.
34
,
1976
, pp. 603–614.
102.
Kulcinski
,
G. L.
,
Mastel
,
B.
, and
Kissinger
,
H. E.
,
Acta Metallurgica
, Vol.
19
,
1971
, pp. 27–36.
103.
Anderson
,
K. R.
,
Garner
,
F. A.
, and
Stubbins
,
J. F.
, “
Unusual Tensile and Fracture Behavior of Pure Copper at High Levels of Neutron-Induced Swelling
,” this publication.
104.
Goods
,
S. H.
,
Scripta Metallurgica
, Vol.
20
,
1986
, pp. 565–569.
105.
Goods
,
S. H.
in
Effects of Radiation on Materials: 14th International Symposium
, Vol.
I
, ASTM STP1046,
Packan
N. F.
et al, Eds.,
ASTM
,
Philadelphia
, pp. 340–352.
106.
Zinkle
,
S. J.
,
Kulcinski
,
G. L.
, and
Mansur
,
L. K.
,
Journal of Nuclear Materials
, Vols.
141–143
,
1986
, pp. 188–192.
107.
Appello
,
M.
and
Fenici
,
P.
,
Journal of Nuclear Materials
, Vol.
152
,
1988
, pp. 348–350.
108.
Zinkle
,
S. J.
,
Plantz
,
D. H.
,
Bair
,
A. E.
,
Dodd
,
R. A.
, and
Kulcinski
,
G. L.
,
Journal of Nuclear Materials
, Vols.
133–134
,
1985
, pp. 685–689.
109.
Piercy
,
G. R.
,
Journal of Physics and Chemistry of Solids
, Vol.
23
,
1962
, pp. 463–477.
110.
Chou
,
P.
and
Ghoniem
,
N. M.
,
Journal of Nuclear Materials
, Vol.
117
,
1983
, pp. 55–63.
111.
Wollenbeiger
,
H.
,
Radiation Effects
, Vol.
113
,
1990
, pp. 161–164.
112.
Woo
,
C. H.
and
Singh
,
B. N.
,
Physica Status Solidi(b)
, Vol.
159
,
1990
, pp. 609–616.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal