Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Advances in Fatigue Lifetime Predictive Techniques
By
MR Mitchell
MR Mitchell
1
Rockwell International Science Center
?
Thousand Oaks, CA 91360 Symposium Chairman and Editor
Search for other works by this author on:
RW Landgraf
RW Landgraf
2
Virginia Polytechnic Institute & State University
?
Blacksburg, VA 24061 Symposium Chairman and Editor
Search for other works by this author on:
ISBN-10:
0-8031-1423-0
ISBN:
978-0-8031-1423-4
No. of Pages:
503
Publisher:
ASTM International
Publication date:
1992

Damage in composite materials initiates and propagates randomly at many sites, which makes both the monitoring and evaluation of its local and global effects difficult. The recently developed thermographic stress analysis method (TSA) provides unique opportunities for full-field damage investigation. To make quantitative analysis possible, a thermoelasticity theory for damage in anisotropic materials was developed. The TSA method associated with this theory opens new doors in investigating the microstructure-mechanics connection of multiphase materials, and in establishing quantitative prediction capabilities of microscopic behaviors and service lives.

Experiments have been performed to measure the damage parameter D, the normalized effective mass density ρc/ρ, and the effective modulus Ec in glass/epoxy [0/90/0/90/0]sand [0/90]5 laminates by the TSA method. Good correlations between the effective moduli of the laminates measured by the TSA method and by an extensometer are found. A relationship between the effective modulus Ec, the undamaged material's modulus E, the number of damaging cyclic loads N, and the peak nominal stress σmax is used to describe the progressive reduction of the modulus. In light of the new thermoelasticity theory for damage, the normalized effective mass density is determined quite easily by the TSA method in comparison with conventional experimental techniques.

1.
Jin
,
N. Y.
and
Winter
,
A. T.
, “
The Role of Cross-Slip of Screw Dislocations in Fatigue Behavior of Copper Single Crystals
,” in
Basic Questions in Fatigue: Volume I
, ASTM STP 942,
Fong
J. T.
and
Fields
R. J.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1988
, pp. 17–25.
2.
Poursartip
,
A.
and
Chinatambi
,
N.
, “
Fatigue Damage Development in Notched (02/±45)s Laminates
,” in
Composite Materials: Fatigue and Fracture, (Second Volume)
, ASTM STP 1012,
Lagace
P. A.
, Ed.,
American Society for Testing and Materials
,
Philadelphia
,
1989
, pp. 45–65.
3.
Peters
,
P. W. M.
, “
The Influence of Fiber, Matrix, and Interface on Transverse Cracking in Carbon Fiber-Reinforced Plastic Cross-Ply Laminates
,” in
Composite Materials: Fatigue and Fracture (Second Volume)
, ASTM STP 1012,
Lagace
P. A.
, Ed.,
American Society for Testing and Materials
,
Philadelphia
,
1989
, pp. 103–117.
4.
Talreja
,
R.
, “
A Continuum Mechanics Characterization of Damage in Composite Materials
,”
Proceedings of the Royal Society (London)
 0370-1662, Vol.
399
,
1985
, pp. 195–216.
5.
Johnson
,
W. S.
and
Wallis
,
R. R.
, “
Fatigue Behavior of Continuous-Fiber Silicon Carbide/Aluminum Composites
,” in
Composite Materials: Fatigue and Fracture
, ASTM STP 907,
Hahn
H. T.
, Ed.,
American Society for Testing and Materials
,
Philadelphia
,
1986
, pp. 161–175.
6.
Johnson
,
W. S.
, “
Fatigue Testing and Damage Development in Continuous Fiber Reinforced Metal Matrix Composites
,” in
Metal Matrix Composites: Testing, Analysis, and Failure Modes
, ASTM STP 1032,
Johnson
W. S.
, Ed.,
American Society for Testing and Materials
,
Philadelphia
,
1989
, pp. 194–221.
7.
O’Brien
,
T. K.
and
Reifsnider
,
K. L.
, “
Fatigue Damage: Stiffness/Strength Comparisons for Composite Materials
,”
Journal of Testing and Evaluation
 0090-3973, Vol.
5
, No.
5
,
1977
, pp. 384–393.
8.
Masters
,
J. E.
and
Reifsnider
,
K. L.
, “
An Investigation of Cumulative Damage Development in Quasi-Isotropic Graphite/Epoxy Laminates
,” in
Damage in Composite Materials
, ASTM STP 775,
Reifsnider
K. L.
, Ed.,
American Society for Testing and Materials
,
Philadelphia
,
1982
, pp. 40–62.
9.
O’Brien
,
T. K.
, “
Characterization of Delamination Onset and Growth in a Composite Laminate
,” in
Damage in Composite Materials
, ASTM STP 775,
Reifsnider
K. L.
, Ed.,
American Society for Testing and Materials
,
Philadelphia
,
1982
, pp. 140–167.
10.
Liber
,
T.
,
Daniel
,
I. M.
, and
Schramm
,
S. W.
, “
Ultrasonic Techniques for Inspecting Flat and Cylindrical Composite Specimens
,” in
Nondestructive Evaluation and Flaw Criticality for Composite Materials
, ASTM STP 696,
Pipes
R. B.
, Ed.,
American Society for Testing and Materials
,
Philadelphia
,
1979
, pp. 5–25.
11.
Sendeckyj
,
G. P.
,
Maddux
,
G. E.
, and
Porter
,
E.
, “
Damage Documentation in Composites by Stereo Radiography
,” in
Damage in Composite Materials
, ASTM STP 775,
Reifsnider
K. L.
, Ed.,
American Society for Testing and Materials
,
Philadelphia
,
1982
, pp. 16–26.
12.
Maddux
,
G. E.
and
Sendeckyj
,
G. P.
, “
Holographic Techniques for Defect Detection in Composite Materials
,” in
Nondestructive Evaluation and Flaw Criticality for Composite Materials
, ASTM STP 696,
Pipes
R. B.
, Ed.,
American Society for Testing and Materials
,
Philadelphia
,
1979
, pp. 26–44.
13.
Reifsnider
,
K. L.
,
Henneke
,
E. G.
, II
, and
Stinchcomb
,
W. W.
, “
Defect-Property Relationships in Composite Materials
,” Technical Report AFML-TR-76-81,
Air Force Materials Laboratory, Wright-Patterson Air Force Base
, Ohio,
04
1976
.
14.
Reifsnider
,
K. L.
and
Williams
,
R. S.
, “
Determination of Fatigue-Related Heat Emission in Composite Materials
,”
Experimental Mechanics
, Vol.
14
, No.
12
,
1974
, pp. 479–485.
15.
Marcus
,
L. A.
and
Stinchcomb
,
W. W.
, “
Measurement of Fatigue Damage in Composite Materials
,”
Experimental Mechanics
, Vol.
15
, No.
2
,
1975
, pp. 55–60.
16.
Mountain
,
D. S.
and
Webber
,
J. M. B.
, “
Stress Pattern Analysis by Thermal Emission (SPATE)
,”
Proc. Soc. Photo-Opt. Inst. Engrs.
, Vol.
164
,
1978
, pp. 189–196.
17.
Zhang
,
D.
, “
Anisotropic Damage: A Thermoelasticity Theory and Verifications
,” Ph.D. thesis,
Department of Engineering Mechanics, University of Wisconsin-Madison
,
06
1989
.
18.
Zhang
,
D.
and
Sandor
,
B. I.
, “
A Thermoelasticity Theory for Damage in Anisotropic Materials
,”
Fatigue and Fracture of Engineering Materials and Structures
, Vol.
13
, No.
5
,
1990
, pp. 497–509.
19.
Biot
,
M. A.
, “
Thermoelasticity and Irreversible Thermodynamics
,”
Journal of Applied Physics
 0021-8979, Vol.
27
, No.
3
,
1956
, pp. 240–253.
20.
Stanley
,
P.
and
Chan
,
W. K.
, “
The Application of Thermoelastic Stress Analysis Techniques to Composite Materials
,”
Proceedings
, SEM Spring Conf. on Exp. Mech.,
Houston, Tex.
,
1987
, pp. 536–544.
21.
Potter
,
R. T.
, “
Stress Analysis in Laminated Fiber Composites by Thermoelastic Emission
,” in
Proceedings
, Second Int. Conf. on Stress Analysis by Thermoelastic Tech.,
London
,
02
1987
.
22.
Kageyama
,
K.
,
Ueki
,
K.
, and
Kikuchi
,
M.
, “
Thermoelastic Technique Applied to Stress Analysis of Carbon Fiber Reinforced Composite Materials
,” in
Proceedings
, VI Intl. Cong. on Exp. Mech., 6–10 June 1988, pp. 931–936.
23.
Lohr
,
D. T.
and
Sandor
,
B. I.
, “
Impact Damage Analysis by Differential Infrared Thermography
,” in
Proceedings
, SEM Fall Conf.,
Savannah, Ga.
,
1987
.
24.
Bakis
,
C. E.
and
Reifsnider
,
K. L.
, “
Non-Destructive Evaluation of Fibre Composite Laminates by Thermoelastic Emission
,”
Review of Progress in Quantitative NDE
, Williamsburg, Va., 21–22 June 1987.
25.
Bakis
,
C. E.
,
Yih
,
H. R.
,
Stinchcomb
,
W. W.
, and
Reifsnider
,
K. L.
, “
Damage Initiation and Growth in Notched Laminates under Reversed Cyclic Loading
,” in
Composite Materials: Fatigue and Fracture (Second Volume)
, ASTM STP 1012,
Lagace
P. A.
, Ed.,
American Society for Testing and Materials
,
Philadelphia
,
1989
, pp. 66–83.
26.
Zhang
,
D.
,
Enke
,
N. F.
, and
Sandor
,
B. L.
, “
Thermographic Stress Analysis of Composite Materials
,”
Experimental Mechanics
, Vol.
30
, No.
1
,
03
1990
, pp. 68–73.
27.
Chow
,
C. L.
and
Wang
,
J.
, “
An Anisotropie Theory of Elasticity for Continuum Damage Mechanics
,”
International journal of Fracture
, Vol.
33
,
1987
, pp. 3–16.
28.
Kachanov
,
L. M.
,
Introduction to Continuum Damage Mechanics
,
Martinus Nijhoff
Dordrecht, The Netherlands
,
1986
.
29.
Sidorff
,
F.
, “
Damage Mechanics and Its Application to Composite Materials
,” in
Mechanical Characterization of Load Bearing Fiber Composite Laminates
,
Cardon
A. H.
and
Verchery
G.
, Eds.,
Elsevier
,
London
,
1986
, pp. 21–35.
30.
Oliver
,
D. E.
, “
Stress Pattern Analysis by Thermal Emission
,” Chapter 14 of
Handbook of Experimental Mechanics
,
Kobayashi
A. S.
, Ed.,
Prentice-Hall
,
Englewood Cliffs, N.J.
,
1986
, pp. 610–620.
31.
Ogin
,
S. L.
,
Smith
,
P. A.
, and
Beaumont
,
P. W. R.
, “
Matrix Cracking and Stiffness Reduction During the Fatigue of a (0/90)s GFRP Laminate
,”
Composite Science and Technology
, Vol.
22
,
1985
, pp. 23–31.
32.
Jones
,
M. R.
,
Mechanics of Composite Materials
,
Scripta Book Company
,
Washington, D.C.
,
1975
.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal