Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Plants for Toxicity Assessment
By
W Wang
W Wang
1
Symposium Chairman and Editor
?
Illinois State Water Survey
?
Peoria, IL 61652
Search for other works by this author on:
JW Gorsuch
JW Gorsuch
2
Symposium Co-Chairman and Editor
?
Eastman Kodak Company
?
Rochester, NY 14652-3617
Search for other works by this author on:
WR Lower
WR Lower
3
Symposium Co-Chairman and Editor
?
University of Missouri
?
Columbia, MO 65203
Search for other works by this author on:
ISBN-10:
0-8031-1397-8
ISBN:
978-0-8031-1397-8
No. of Pages:
371
Publisher:
ASTM International
Publication date:
1990

The typical green terrestrial plant is well adapted to sensing and reporting significant changes in its environment. This allows native plants growing in natural settings to be used to assess changes that might be toxic to plant or animal tissue. The basis of this bioassay is the chlorophyll molecule, which serves as an intrinsic fluorescent probe of the performance and capacity of photosynthesis. Under normal conditions, 97% of the light energy absorbed by chlorophyll is converted to biochemical forms of energy in photosynthesis. Stress conditions can reduce the rate of photosynthesis, disturb the pigment-protein apparatus, or block the light-driven photosynthetic electron transport in the chloroplast. This results in an increased loss of absorbed light energy of 6 to 10% via chlorophyll fluorescence with a peak in emission at 683 nm at physiological temperatures. The inverse relationship between in vivo chlorophyll fluorescence and photosynthesis has long been known as the Kautsky Effect.

Light-induced chlorophyll fluorescence from dark-adapted leaves can be recorded with portable, sensitive instruments using intact leaves. This nondestructive method essentially monitors the physiological well-being of the plant. Any stress including disease, nutritional stress, water, temperature, radiation, and chemical stress can be quickly and accurately recorded. The overall photosynthetic process can be thought of as a series of sensitive sites connected to the fluorescent photosynthetic reaction center, which respond to a large number of different insults and report these effects as a change in fluorescence. Chlorophyll fluorescence in intact native plants can be used to assess toxicity in the environment or in a laboratory bioassay.

1.
Krause
,
G. H.
and
Weis
,
E.
,
Photosynthesis Research
, Vol.
6
, No.
1
,
1985
, pp. 139–157.
2.
Lichtenthaler
,
H. K.
and
Rinderle
,
U.
,
CRC Critical Reviews in Analytical Chemistry
, Vol.
19
,
1988
, pp. S29–S85.
3.
Hipkins
,
M. F.
and
Baker
,
N. R.
in
Photosynthesis Energy Transduction; a Practical Approach
,
Hipkins
M. F.
and
Baker
N. R.
, Eds.,
IRL Press
,
Oxford
, 4—Spectroscopy,
1986
, pp. 51–102.
4.
Schreiber
,
U.
and
Schliwa
,
U.
,
Photosynthesis Research
, Vol.
11
. No.
1
.
1987
, pp. 173–182.
5.
Oquist
,
G.
and
Wass
,
R.
,
Physiologia Plantarum
, Vol.
73
, No.
2
,
1988
, pp. 211–217.
6.
Havaux
,
M.
,
Plant Physiology Biochemistry
, Vol.
26
, No.
6
,
1988
, pp. 695–704.
7.
Harris
,
M.
and
Camlin
,
M. S.
,
Journal of Agricultural Science (Camb.)
, Vol.
110
, No.
2
,
1988
, pp. 627–632.
8.
Samson
,
G.
and
Popovic
,
R.
,
Ecotoxicology and Environmental Safety
, Vol.
16
,
1988
, pp. 272–278.
9.
Miles
,
C. D.
,
Brandle
,
J. R.
,
Daniel
,
D. J.
,
Chu-der
,
O.
,
Schnare
,
P. D.
, and
Uhlik
,
D. J.
,
Plant Physiology
, Vol.
49
, No.
3
,
1972
, pp. 820–825.
10.
Lee
,
E. H.
and
Miles
,
C. D.
,
Plant Science Letters
, Vol.
5
,
1975
, pp. 33–40.
11.
Miles
,
D.
,
Bolen
,
P.
,
Farag
,
S.
,
Goodin
,
R.
,
Lutz
,
J.
,
Moustafa
,
A.
,
Rodriquez
,
B.
, and
Weil
,
C.
,
Biochemical Biophysical Research Communications
, Vol.
50
, No.
4
,
1973
, pp. 1113–1119.
12.
Miles
,
D.
,
Methods in Enzymology
, Vol.
69
,
1980
, pp. 3–23.
13.
Havaux
,
M.
,
Ernez
,
M.
, and
Lannoye
,
R.
,
Journal of Plant Physiology
, Vol.
133
, No.
3
,
1988
, pp. 555–560.
14.
Rosema
,
A.
,
Cecchi
,
G.
,
Pantani
,
L.
,
Radicatti
,
B.
,
Romuli
,
M.
,
Mazzinghi
,
P.
,
van Kooten
,
O.
, and
Kliffen
,
C.
, in
Applications of Chlorophyll Fluorescence
,
Lichtenthaler
H. K.
, Ed.,
Kluwer Academic Publications
,
Dordrecht, The Netherlands
,
1988
, pp. 307–317.
15.
Peterson
,
R. B.
,
Sivak
,
M. N.
, and
Walker
,
D. A.
,
Plant Physiology
, Vol.
88
, No.
1
,
1988
, pp. 158–163.
16.
Lichtenthaler
,
H. K.
,
Journal of Plant Physiology
, Vol.
131
, No.
1
,
1987
, pp. 101–110.
17.
Stein
,
U.
,
Buschmann
,
C.
, and
Blaich
,
R.
,
Vitis
, Vol.
25
, No.
2
,
1986
, pp. 129–141.
18.
McFarlane
,
J. C.
,
Watson
,
R. D.
,
Theisen
,
A. F.
,
Jackson
,
R. D.
,
Ehrler
,
W. L.
,
Pinter
,
P. J.
,
Idso
,
S. B.
, and
Reginato
,
R. J.
,
Applied Optics
 0003-6935, Vol.
19
, No.
10
,
1980
, pp. 3287–3289.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal