Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Characterization and Toxicity of Smoke
By
HK Hasegawa
HK Hasegawa
1
Lawrence Livermore National Laboratory
,
Livermore, CA 94550
;
symposium chairman and editor
Search for other works by this author on:
ISBN-10:
0-8031-1386-2
ISBN:
978-0-8031-1386-2
No. of Pages:
197
Publisher:
ASTM International
Publication date:
1990

Toxicity of smoke is only one of many factors determining the hazard or the risk resulting if a product were involved in a fire in a specific scenario. Other factors include: amount of smoke (i.e., concentration of combustion products in the atmosphere), rate and quantity of heat release, mass loss rate, and flame spread rate, as well as such “environmental” factors as ignition source characteristics, fire detection and suppression devices, building occupancy, and code enforcement. A factor almost specific to the smoke generated from burning poly (vinyl chloride) (PVC) is the decay of hydrogen chloride (HCl) by reaction with building surfaces. The values of smoke toxic potency measured will also be affected by a number of parameters, including combustion mode, exposure mode, toxicological end point, and statistical analysis of results.

A crucial factor, often overlooked, is the choice of an animal model appropriate as a surrogate for man, and its validation. Test animals are frequently chosen on the basis of convenience, cost, or other characteristics (e.g., sensitivity) rather than because of their similarity to man. This is particularly important in combustion toxicology, where one test species may not be a good model for all the major combustion products generated. Thus, comparisons of materials producing different major combustion products must be approached with caution to ensure that any apparent differences encountered in tests are not simply an artifact of test species.

Over recent years, increasing evidence has surfaced that some rodent species are poor models for the toxic response of man to irritant gases or to smoke-containing irritants. Studies on HCl (as a pure gas) and on the smoke generated from the burning of PVC have indicated that mice are much more sensitive than rats. More importantly, they are much more sensitive than primates. It has also been established that rats are a good model for primates in terms of the lethal effects of irritant products. Although primates have survived 15-min exposures to 10 000 ppm of HCl, 2500 ppm is lethal to mice. Moreover, under the same exposure conditions, mice will die at PVC smoke levels four to seven times lower and HCl levels seven to ten times lower than those at which rats will. In contrast, lethal doses of asphyxiants such as carbon monoxide (CO) are similar in rats and mice.

These results indicate that the response of the mouse significantly overestimates the toxic potency of HCl and of PVC smoke to man.

1.
Levin
,
B. C.
,
Fowell
,
A. J.
,
Birky
,
M. M.
,
Paabo
,
M.
,
Stolte
,
A.
, and
Malek
,
D.
, “
Further Development of a Test Method for the Assessment of the Acute Inhalation Toxicity of Combustion Products
,” NBSIR 82-2532,
National Bureau of Standards
, Gaithersburg, MD,
1982
.
2.
Kimmerle
,
G.
, “
Aspects and Methodology for the Evaluation of Toxicological Parameters during Fire Exposure
,”
Journal of Combustion Toxicology
, Vol.
1
,
1974
, p. 4.
3.
Alarie
,
Y. C.
and
Anderson
,
R. C.
, “
Toxicologic and Acute Lethal Hazard Evaluation of Thermal Decomposition Products of Synthetic and Natural Polymers
,”
Toxicology and Applied Pharmacology
 0041-008X, Vol.
51
,
1979
, p. 341.
4.
Alexeeff
,
G. V.
and
Packham
,
S. C.
, “
Use of a Radiant Furnace Fire Model to Evaluate Acute Toxicity of Smoke
,”
Journal of Fire Sciences
, Vol.
2
,
1984
, p. 306.
5.
Cornish
,
H. H.
,
Hahn
,
K. J.
, and
Barth
,
M. L.
, “
Experimental Toxicology of Pyrolysis and Combustion Hazards
,”
Environmental Health Perspectives
 0091-6765, Vol.
11
,
1975
, pp. 191–96.
6.
Hirschler
,
M. M.
, “
Fire Hazard and Toxic Potency of the Smoke from Burning Materials
,”
Journal of Fire Sciences
, Vol.
5
,
1987
, pp. 289–307.
7.
Casarett
,
L. J.
, in
Toxicology—The Basic Science of Poisons
,
Casarett
L. J.
and
Doull
J.
, Eds.,
New York
,
Macmillan
,
1975
, p. 24.
8.
Hilado
,
C. J.
,
Flammability Handbook of Plastics
, 3rd Ed.,
Technomic
,
Lancaster, PA
,
1982
.
9.
Cullis
,
C. F.
and
Hirschler
,
M. M.
, “
The Combustion of Organic Polymers
,”
Oxford University Press
,
Oxford
,
1981
.
10.
Doe
,
J.
, “
The Combustion Toxicology of Polyvinylchloride Revisited
,”
Journal of Fire Sciences
, Vol.
5
,
1987
, pp. 228–47.
11.
Hinderer
,
R. K.
, “
A Comparative Review of the Combustion Toxicity of Polyvinyl Chloride
,”
Journal of Fire Sciences
, Vol.
2
,
1984
, pp. 82–97.
12.
Huggett
,
C.
and
Levin
,
B.
, “
Toxicity of Pyrolysis and Combustion Products of Poly (Vinyl Chloride): A literature Assessment
,” NBSIR 85-3286,
National Bureau of Standards
, Gaithersburg, MD,
1985
.
13.
Huggett
,
C.
, “
Reporting Combustion Product Toxicity Test Results
,”
Journal of Fire Sciences
, Vol.
2
,
1984
, pp. 79–82.
14.
Dyer
,
R. F.
and
Esch
,
V. H.
, “
Polyvinyl Chloride Toxicity in Fires
,”
Journal of the American Medical Association
, Vol.
235
,
1976
, pp. 393–397.
15.
Wallace
,
D. N.
, “
Dangers of Polyvinyl Chloride Wire Insulation Decomposition. I. Long Term Health Impairments: Studies of Fire Fighters of the 1975 New York Telephone Fire and Survivors of the 1977 Beverly Hills Supper Club Fire
,”
Journal of Combustion Toxicology
, Vol.
8
,
1981
, pp. 205–26.
16.
Wallace
,
D. N.
,
Nelson
,
N.
, and
Gates
,
T.
, “
Polyvinyl Chloride Wire Insulation Decomposition. II. Consideration of the Long Term Health Effects from Chlorinated Hydrocarbons
,”
Journal of Combustion Toxicology
, Vol.
9
,
1982
, pp. 105–12.
17.
Sorenson
,
W. R.
, “
Polyvinyl Chloride in Fires
,”
Journal of the American Medical Association
, Vol.
236
,
1976
, pp. 1449.
18.
Cleveland
,
F. P.
, “
A Critique of Two Papers on ‘Dangers of Polyvinyl Chloride Wire Insulation Decomposition’
,”
Journal of Combustion Toxicology
, Vol.
9
,
1982
, pp. 115–20.
19.
Colardyn
,
F.
,
van der Straeten
,
M.
,
Lamont
,
H.
, and
van Peteghem
,
T.
, “
Acute Inhalation-Intoxication by Combustion of Polyvinylchloride
,”
International Archive of Occupational and Environmental Health
 0340-0131, Vol.
38
,
1976
, pp. 121–127.
20.
Lehmann
,
K. B.
, (University of Wurzburg), “
Experimental Studies on the Influence of Technical and Hygienically Important Gases and Vapours on the Organism, Parts I and II: Ammonia and Hydrogen Chloride Gas
,”
Archiv fur Hygiene
, Vol.
5
,
1886
, pp. 1–125.
21.
Matt
,
L.
, “
Experimental Studies to Understand the Influence of Poisonous Gases on Humans
,” medical doctoral dissertation,
Faculty of Medicine, King Julius-Maximilian University of Wurzburg
, Ludwigshafen-am-Rhein, Germany,
1889
.
22.
Lehmann
,
K. B.
, (University of Wurzburg),
Wilke
,
J.
,
Yamada
,
J.
, and
Wiener
,
J.
, “
New Investigations on the Quantitative Absorption of Some Poisonous Gases by Animals and Humans via the Respiratory Tract and its Parts: Ammonia, Hydrochloric Acid, Sulphurous Acid, Acetic Acid and Carbon Disulphide
,”
Archiv fur Hygiene
, Vol.
67
,
1908
, pp. 57–100.
23.
Ronzani
,
E.
(University of Padua, Italy), “
Regarding the Influence of Inhalation of Irritating Industrial Gases on the Defensive Mechanisms of the Organism with Regards to Infectious Diseases, Part II: Hydrogen Fluoride Gas, Ammonia and Hydrogen Chloride Gas.
,”
Archiv fur Hygiene
, Vol.
70
,
1909
, pp. 217–269.
24.
Lehmann
,
K. B.
and
Burck
,
A.
(University of Wurzburg), “
On the Absorption of Hydrogen Chloride Vapours by Animals in Long Term Exposures
,”
Archiv fur Hygiene
, Vol.
72
,
1910
, pp. 343–357.
25.
DiPasquale
,
L. C.
and
Davis
,
H. V.
, “
The Acute Toxicity of Brief Exposures to Hydrogen Fluoride, Hydrogen Chloride, Nitrogen Dioxide and Hydrogen Cyanide Singly and in Combination with Carbon Monoxide
,” Report AD-751,
442
,
U.S. Dept. Commerce
,
1971
.
26.
Higgins
,
E. A.
,
Fiorca
,
V.
,
Thomas
,
A. A.
, and
Davis
,
H. V.
, “
Acute Toxicity of Brief Exposures to HF, HCl, NO2 and HCN with and without CO
,”
Fire Technology
 0015-2684, Vol.
8
,
1972
, pp. 120–30.
27.
Darmer
,
K. I.
,
Kinkead
,
E. R.
, and
DiPasquale
,
L. C.
, “
Acute Toxicity in Rats and Mice Exposed to Hydrogen Chloride Gas and Aerosols
,”
Journal of American Industrial Hygienists Association
, Vol.
35
,
1974
, pp. 623–31.
28.
Kaplan
,
H. L.
,
Grand
,
A. F.
,
Rogers
,
W. R.
,
Switzer
,
W. G.
, and
Hartzell
,
G. E.
, “
A Research Study of the Assessment of Escape Impairment by Irritant Combustion Gases in Postcrash Aircraft Fires
,” DOT/FAA/CT-84/16,
U.S. Dept. Transportation, FAA
,
09
1984
.
29.
Hartzell
,
G. E.
,
Grand
,
A. F.
,
Kaplan
,
H. L.
,
Priest
,
D. N.
,
Stacy
,
H. W.
,
Switzer
,
W. G.
, and
Packham
,
S. C.
, “
Analysis of Hazards to Life Safety in Fires: a Comprehensive Multi-Dimensional Research Program—Year 1
,” NBS Contract NB83NADA4015,
Southwest Research Institute
,
05
1985
.
30.
Hartzell
,
G. E.
,
Packham
,
S. C.
,
Grand
,
A. F.
, and
Switzer
,
W. G.
, “
Modeling of Toxicological Effects of Fire Gases: III. Quantification of Post-Exposure Lethality of Rats from Exposure to HCl Atmospheres
,”
Journal of Fire Sciences
, Vol.
3
,
1985
, pp. 195–207.
31.
Kaplan
,
H. L.
,
Grand
,
A. F.
,
Switzer
,
W. G.
,
Mitchell
,
D. S.
,
Rogers
,
W. R.
, and
Hartzell
,
G. E.
, “
Effects of Combustion Gases on Escape Performance of the Baboon and the Rat
,”
Journal of Fire Sciences
, Vol.
3
,
1985
, pp. 228–44.
32.
Hartzell
,
G. E.
,
Stacy
,
H. W.
,
Switzer
,
W. G.
,
Priest
,
D. N.
, and
Packham
,
S. C.
, “
Modeling of Toxicological Effects of Fire Gases: IV. Intoxication of Rats by Carbon Monoxide in the Presence of a Toxicant
,”
Journal of Fire Sciences
, Vol.
3
,
1985
, pp. 263–79.
33.
Kaplan
,
H. L.
,
Anzueto
,
A.
,
Switzer
,
W. G.
, and
Hinderer
,
R. K.
, “
Respiratory Effects of Hydrogen Chloride in the Baboon
,”
25th Annual Meeting of the Society of Toxicologists
,
1986
.
34.
Anzueto
,
A.
,
Switzer
,
W. G.
,
Kaplan
,
H. L.
, and
Hinderer
,
R. K.
, “
Long-Term Effects of Hydrogen Chloride on Pulmonary Function and Morphology in NonHuman Primates
,”
26th. Annual Meeting of the Society of Toxicologists
,
1987
.
35.
Kaplan
,
H. L.
,
Hinderer
,
R. K.
, and
Anzueto
,
A.
, “
Extrapolation of Mice Lethality Data to Humans
,”
Journal of Fire Sciences
, Vol.
5
,
1987
, pp. 149–51.
36.
Kaplan
,
H. L.
,
Anzueto
,
A.
,
Switzer
,
W. G.
, and
Hinderer
,
R. K.
, “
Effects of Hydrogen Chloride on Respiratory Response and Pulmonary Function of the Baboon
,”
Journal of Toxicological and Environmental Health
, Vol.
23
,
1988
, pp. 473–93.
37.
Hartzell
,
G. E.
,
Grand
,
A. F.
, and
Switzer
,
W. G.
, “
Modeling of Toxicological Effects of Fire Gases: VI. Further Studies on the Toxicity of Smoke Containing Hydrogen Chloride
,”
Journal of Fire Sciences
, Vol.
5
,
1987
, pp. 368–91.
38.
Kaplan
,
H. L.
,
Hirschler
,
M. M.
,
Switzer
,
W. G.
, and
Coaker
,
A. W.
, “
A Comparative Study of Test Methods Used to Determine the Toxic Potency of Smoke
,”
Proceedings
, 13th International Conference on Fire Safety,
San Francisco, CA
,
Hilado
C. J.
, Ed.,
Product Safety Corp.
,
San Francisco, CA
,
1988
, pp. 279–301.
39.
Klonne
,
D. R.
,
Ulrich
,
C. E.
,
Riley
,
M. G.
,
Barrow
,
C. S.
,
Hamm
, ,
T. E.
 Jr.
, and
Morgan
,
K. T.
, “
Chlorine: Chronic Inhalation Toxicity Studies in Rhesus Monkeys
,”
The Toxicologist
, Vol.
5
, No.
1
,
1984
, p. 28.
40.
Barrow
,
C. S.
,
Kociba
,
R. J.
,
Rampy
,
L. W.
,
Keyes
,
D. G.
, and
Albee
,
R. R.
, “
An Inhalation Toxicity Study of Chlorine in Fischer 344 Rats Following 30 Days of Exposure
,”
Toxicology and Applied Pharmacology
 0041-008X, Vol.
49
,
1979
, pp. 77–88.
41.
Alarie
,
Y. C.
, “
The Toxicity of Smoke from Polymeric Materials During Thermal Decomposition
,”
Annual Review of Pharmacology and Toxicology
 0362-1642, Vol.
25
,
1985
, pp. 325–47.
42.
Alarie
,
Y. C.
, “
Toxicological Evaluation of Airborne Chemical Irritants and Allergens Using Respiratory Reflex Reactions
,” in
Inhalation Toxicology and Technology
,
Leong
B. K. J.
, Ed.,
Ann Arbor Science
,
Ann Arbor
,
1981
, pp. 207–32.
43.
Babrauskas
,
V.
,
Levin
,
B. C.
, and
Gann
,
R. G.
, “
A New Approach to Fire Toxicity Data for Hazard Evaluation
,”
Fire Journal
 0015-2617, Vol.
81
, No.
2
,
1987
, pp. 22–28, pp. 70–71.
44.
Esposito
,
F. M.
and
Alarie
,
Y. C.
, “
Inhalation Toxicity of Carbon Monoxide and Hydrogen Cyanide Released During the Thermal Decomposition of Polymers
,”
Journal of Fire Sciences
, Vol.
6
,
1988
, pp. 195–239.
45.
Burleigh-Flazer
,
H.
,
Wong
,
K. L.
, and
Alarie
,
Y. C.
, “
Evaluation of the Pulmonary Effects of HCl Using CO2 Challenges in Guinea Pigs
,”
Fundamentals of Applied Toxicology
 0272-0590, Vol.
5
,
1985
, pp. 978–85.
46.
Patra
,
A. L.
,
Gooya
,
A.
, and
Menache
,
M. G.
, “
A Morphometric Comparison of the Nasopharyngeal Airway of Laboratory Animals and Humans
,”
Anatomical Record
 0003-276X, Vol.
215
,
1986
, pp. 42–50.
47.
Herrington
,
R. M.
and
Story
,
B. A.
, “
The Release Rate of Heat, Smoke, and Primary Toxicants from Burning Materials
,”
Journal of Fire Flammability
, Vol.
9
,
1978
, pp. 284–307.
48.
Grand
,
A. F.
, “
Continuous Monitoring of Hydrogen Chloride in Combustion Atmospheres and in Air
,”
Journal of Fire Sciences
, Vol.
6
,
1988
, pp. 61–79.
49.
Beitel
,
J. J.
,
Bertelo
,
C. A.
,
Carroll
, ,
W. F.
 Jr.
,
Gardner
,
R. O.
,
Grand
,
A. F.
,
Hirschler
,
M. M.
, and
Smith
,
G. F.
, “
Hydrogen Chloride Transport and Decay in a Large Apparatus, I. Decomposition of Poly (Vinyl Chloride) Wire Insulation in a Plenum by Current Overload
,”
Journal of Fire Sciences
, Vol.
4
,
1986
, pp. 15–41.
50.
Sackner
,
M. A.
,
Greeneltch
,
M. S.
,
Heiman
,
S.
, et al
, “
Diffusing Capacity, Membrane Diffusing Capacity, Capillary Blood Volume, Pulmonary Tissue Volume, and Cardiac Output Measured by a Rebreathing Technique
,”
American Review of Respiratory Disease
 0003-0805, Vol.
111
,
1975
, pp. 157–65.
51.
Pengelly
,
L. C.
, “
Curve-fitting Analysis of Pressure Volume Characteristics of the Lung
,”
Journal of Applied Physiology
 0021-8979, Vol.
42
,
1977
, pp. 111–6.
52.
Amdur
,
M. O.
,
Silverman
,
L.
, and
Drinker
,
P.
, “
Inhalation of Sulfuric Acid Mist by Human Subjects
,”
Industrial Hygiene and Occupational Medicine
, Vol.
6
,
1952
, pp. 305–13.
53.
Purser
,
D. A.
and
Woolley
,
W. D.
, “
Biological Studies of Combustion Atmospheres
,”
Journal of Fire Sciences
, Vol.
1
,
1983
, pp. 118–44.
54.
Boudene
,
C.
,
Jounaz
,
J. M.
, and
Truhaut
,
R.
, “
Protective Effects of Water Against Toxicity of Pyrolysis and Combustion Products of Wood and Poly (Vinyl Chloride)
,”
Journal of Macromolecular Science (Chemistry)
, Vol.
A11
(
8
),
1977
, pp. 1529–45.
55.
Hartzell
,
G. E.
,
Grand
,
A. F.
, and
Switzer
,
W. G.
, “
Studies on Toxicity of Smoke Containing HCl
,”
Fire And Polymers
, Macromolecular Secretariat American Chemical Society Symposium, 10–13 April, 1989,
Dallas, TX
.
56.
Amoore
,
J. E.
and
Hautala
,
E.
, “
Odor as an Aid to Chemical Safety: Odor Thresholds Compared with Threshold Limit Values and Volatilities for 214 Industrial Chemicals in Air and Water Dilution
,”
Journal of Applied Toxicology
, Vol.
3
, No.
6
,
1983
, pp. 272–90.
57.
Smith
,
G. F.
, “
A Quick Method for Determining the Acid Gas Evolution from PVC Formulations
,”
Journal of Vinyl Technology
, Vol.
9
, No.
1
,
1987
, pp. 18–21.
58.
Kaplan
,
H. L.
,
Hirschler
,
M. M.
,
Switzer
,
W. G.
, and
Coaker
,
A. W.
, “
Limitations of the UPITT Method for the Screening of Materials for the Toxic Potency of Smoke
,”
1988 Annual Meeting Society of Toxicology
,
Houston
, paper No. 574, February, 1988.
59.
Grand
,
A. F.
, “
Effect of Experimental Conditions on the Evolution of Combustion Products Using a Modified University of Pittsburgh Toxicity Test Apparatus
,”
Journal of Fire Sciences
, Vol.
3
,
1985
, pp. 280–304.
60.
Fardell
,
P. J.
and
Rogowski
,
Z. W.
, “
Report of the Performance of the Pittsburgh/Alarie Combustion Model
,” Fire Research Station, Building Research Establishment CR21/85,
09
1985
, Borehamwood, U.K.
61.
Debanne
,
S. M.
,
Haller
,
H. S.
, and
Rowland
,
D. Y.
, “
A Statistical Comparison of Test Protocols Used in The Assessment of Combustion Product Toxicity
,”
Journal of Fire Sciences
, Vol.
5
,
1987
, pp. 416–34.
62.
Norris
,
J. C.
, “
Investigation of the Dual LC50 values in Woods Using the University of Pittsburgh Combustion Toxicity Apparatus
,” this publication.
63.
Beitel
,
J. J.
,
Bertelo
,
C. A.
,
Carroll
, ,
W. F.
 Jr.
,
Grand
,
A. F.
,
Hirschler
,
M. M.
, and
Smith
,
G. F.
, “
Hydrogen Chloride Transport and Decay in a Large Apparatus: II. Variables Affecting Hydrogen Chloride Decay
,”
Journal of Fire Sciences
, Vol.
5
,
1987
, pp. 105–45.
64.
Galloway
,
F. M.
and
Hirschler
,
M. M.
, “
Model for the Mass Transfer and Decay of Hydrogen Chloride in a Fire Scenario
,” in
Mass Modeling of Fire
, ASTM STP 983,
Mehaffey
J. R.
, Ed.,
ASTM
,
Philadelphia
,
1987
, pp. 35–57.
65.
Galloway
,
F. M.
and
Hirschler
,
M. M.
, “
Application of a Model for Transport and Decay of Hydrogen Chloride from Burning Poly (Vinyl Chloride) to Room-Corridor-Room Experiments
,”
Proceedings
, 14th International Conference on Fire Safety,
San Francisco
,
Hilado
C. J.
, Ed.,
Product Safety Corp.
,
San Francisco
,
1989
, pp. 287–303.
66.
Smith
,
G. F.
and
Dickens
,
E. D.
, “
New Low Smoke Thermoplastics to Meet New Needs in the Marketplace
,”
Proceedings
, 8th. International Conference on Fire Safety,
Product Safety Corp.
,
San Francisco
,
Hilado
C. J.
, Ed., Product Safety,
1983
, pp. 227–42.
67.
Hirschler
,
M. M.
, “
First Order Evaluation of Fire Hazard in a Room Due to the Burning of Poly (Vinyl Chloride) Products in a Plenum: Estimation of the Time Required to Establish an Untenable Atmosphere
,”
Journal of Fire Sciences
, Vol.
6
,
1988
, pp. 100–120.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal