Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Composite Materials: Testing and Design (Ninth Volume)
By
SP Garbo
SP Garbo
1Sikorsky Aircraft Division,
United Technologies Corp.
,
Stratford, CT 06601
;
symposium chairman and editor
.
Search for other works by this author on:
ISBN-10:
0-8031-1287-4
ISBN:
978-0-8031-1287-2
No. of Pages:
598
Publisher:
ASTM International
Publication date:
1990

Composite bars of rectangular cross sections are loaded in torsion to determine the principal shear moduli and interlaminar strengths. The use of rectangular cross sections greatly simplifies the fabrication of specimens. In [0], [90], and cross-plied laminates, torsional rigidity depends only on the principal shear moduli and the dimensions of the cross section. Thus, the shear moduli can be determined from the measured torsional rigidity. This procedure proves very accurate and convenient in determining the transverse shear modulus G23. The use of this technique to measure in-plane shear and interlaminar strengths is also discussed in this paper.

1.
Hashin
,
Z.
, “
Theory of Composite Materials
,”
Mechanics of Composite Materials, Proceedings
, Fifth Symposium on Naval Structural Mechanics,
Wendt
F. W.
,
Liebowitz
F. H.
, and
Perrone
N.
, Eds.,
Pergamon Press
,
Oxford, England
,
1970
.
2.
Drzal
,
L. T.
,
Rich
,
M. J.
, and
Lloyd
,
P. J.
, “
Adhesion of Graphite Fibers to Epoxy Matrices: I. The Role of Fiber Surface Treatment
,”
Journal of Adhesion
 0021-8464, Vol.
16
,
1982
, pp. 1–30.
3.
Kriz
,
R. D.
and
Stinchcomb
,
W. W.
, “
Elastic Moduli of Transversely Isotropic Graphite Fibers and Their Composites
,”
Experimental Mechanics
, Vol.
19
, No.
1
, pp. 41–49.
4.
Knight
,
M.
, “
Three-Dimensional Elastic Moduli of Graphite/Epoxy Composites
,”
Journal of Composite Materials
, Vol.
16
,
1982
, pp. 153–159.
5.
Pagano
,
N. J.
and
Kim
,
R. Y.
, “
Interlaminar Shear Strength of Cloth-Reinforced Composites.
6.
Whitney
,
J. M.
,
Daniel
,
I. M.
, and
Pipes
,
R. B.
,
Experimental Mechanics of Fiber Reinforced Composite Materials
, SESA Monograph No. 4,
SESA Publications
,
Brookfield Center, CT
,
1982
.
7.
Lekhnitskii
,
S. G.
,
Theory of Elasticity of Anisotropic Body
,
Mir Publishers
,
Moscow, USSR
,
1981
.
8.
Pagano
,
N. J.
, “
Exact Moduli of Anisotropic Laminates
,”
Composite Materials
, Vol.
2
,
Sendeckyj
G. P.
, Ed.,
Academic Press
.
New York
.
1974
. pp. 23–45.
9.
Sun
,
C. T.
and
Li
,
S.
, “
Three-Dimensional Effective Elastic Constants for Thick Laminates
,”
Journal of Composite Materials
, Vol.
22
.
07
1988
, pp. 629–639.
10.
Kurtz
,
R. D.
and
Whitney
,
J. M.
, “
An Exact Solution for Torsion of [0°/90°] Laminates
,”
Proceedings
, Third Technical Conference on Composite Materials, American Society for Composites,
Seattle, Washington
, 25–29 Sept. 1988.
11.
Sun
,
C. T.
and
Zhou
,
S. G.
, “
Failure of Quasi-Isotropic Composite Laminates with Free Edges
,”
Journal of Fiber-Reinforced Plastics and Composites
, Vol.
7
,
11
1988
, pp. 515–557.
12.
Sun
,
C. T.
and
Yamada
,
S.
, “
On the Measurement of Lamina In-Plane Shear Strength
,”
Composites Technology Review
, Vol.
4
, No.
2
,
1982
, pp. 52–53.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal