Skip Nav Destination
ASTM Selected Technical Papers
Semiconductor Fabrication: Technology and Metrology
By
ISBN-10:
0-8031-1273-4
ISBN:
978-0-8031-1273-5
No. of Pages:
485
Publisher:
ASTM International
Publication date:
1989
eBook Chapter
Accurate Junction-Depth Measurements Using Chemical Staining
By
R Subrahmanyan
,
R Subrahmanyan
1Ravi Subrahmanyan, Hisham Z. Massoud, and Richard B. Fair are with the Department of Electrical Engineering,
Duke University
, Durham, North Carolina, 27706
.
Search for other works by this author on:
HZ Massoud
,
HZ Massoud
1Ravi Subrahmanyan, Hisham Z. Massoud, and Richard B. Fair are with the Department of Electrical Engineering,
Duke University
, Durham, North Carolina, 27706
.
Search for other works by this author on:
RB Fair
RB Fair
1Ravi Subrahmanyan, Hisham Z. Massoud, and Richard B. Fair are with the Department of Electrical Engineering,
Duke University
, Durham, North Carolina, 27706
.
Search for other works by this author on:
Page Count:
24
-
Published:1989
Citation
Subrahmanyan, R, Massoud, H, & Fair, R. "Accurate Junction-Depth Measurements Using Chemical Staining." Semiconductor Fabrication: Technology and Metrology. Ed. Gupta, D. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959 : ASTM International, 1989.
Download citation file:
The techniques of chemical staining, spreading resistance, and secondary-ion mass spectrometry (SIMS) have been used in the determination of the depth of diffused and ion-implanted junctions in an effort to estimate the accuracy of the staining method. Computer simulations were also used to study the behaviour of charge carriers in the semiconductor under illumination, and the accuracy of the junction depth obtained from raw spreading resistance data. It was observed that it is possible to measure junction depth reproducibly, to within 200 Å of the metallurgical junction depth, by carefully controlling the surface preparation of the sample and the lighting conditions under which the staining takes place.
References
1.
Archer
P. J.
, J. Phys. Chem. Solids
0022-3697, Vol. 14
, p. 104, 1960
.2.
Memming
R.
and Schwandt
G.
, Surf. Sci.
0039-6028, Vol. 4
, p. 109, 1966
.3.
Turner
D. R.
, J. Electrochem. Soc.
, Vol. 105
, p. 402, 1958
.4.
See
Runyan
W. R.
, Semiconductor Measurements and Instrumentation
, McGraw Hill
, New York
, 1975
, andSchimmel
D.
and Elkind
M. J.
, J. Electrochem. Soc.
0013-4651 Vol. 125
, p. 152, 1978
.5.
Hill
C.
, “Measurement of local diffusion coefficients in planar device structures
,” in Semiconductor Silicon 1981
, Huff
H. R.
, Kriegler
R. J.
, and Takeishi
Y.
, Eds., The Electrochemical Society
, Princeton, New Jersey
, 1981
.6.
Wu
C. P.
, Douglas
E. C.
, Mueller
C. W.
, and Williams
R.
, J. Electrochem. Soc.
0013-4651, Vol. 126
, p. 1982, 1979
.7.
Carter
C. H.
, Maszara
W.
, Rozgonyi
G. A.
, and Sadana
D. K.
, “Comparison of damage profiles obtained by angle lapping/staining and cross-sectional transmission electron microscopy
,” SPIE Conference
1984
, p. 463.8.
ASTM Standard
F-110, Revision, American Society for Testing a Materials
, 02
1975
.9.
Mazur
R. G.
, “The Effects of RF Electromagnetic Radiation on Spreading Resistance Measurements
,” in Semiconductor Processing
, ASTM STP 850, Gupta
Dinesh C.
, Ed., American Society for Testing and Materials
, 1984
.10.
Newbury
D. E.
and Simon
D.
, in SIMS IV
, Benninghoven
A.
, Okano
J.
, Shimizu
R.
, and Werner
W. H.
, Eds., Springer Verlag
, Berlin
, 1984
.11.
Turner
D. R.
, J. Electrochem. Soc.
, Vol. 106
, p. 701, 1959
.12.
Davies
D. E.
, Solid-State Electron.
, Vol. 13
, p. 229, 1970
.13.
Whoriskey
P. J.
, J. Appl. Phys.
, Vol. 126
, p. 867, 1958
.14.
Silverman
S. J.
and Benn
D. R.
, J. Electrochem. Soc.
, Vol. 105
, p. 170, 1958
.15.
Solid State Measurements
, “ASR-100 C Spreading Resistance Measurement Unit, Operator's Manual
,” Pittsburhg, PA
.16.
Brennan
R.
and Dickey
D.
, Solid-State Technol.
, Vol. 27
(12
), p. 125, 1984
.17.
Pawlik
M.
, “Dopant Profiling in Silicon
,” in Semiconductor Processing
, ASTM STP 850, Gupta
Dinesh C.
, Ed., American Society for Testing and Materials
, 1984
.18.
Tong
A. H.
, Gorey
E. F.
, and Schneider
C. P.
, Rev. Sci. Inst.
, Vol. 43
, p. 320, 1972
.19.
Solid State Measurements
, “Small-Angle Measurement
,” Pittsburgh, PA
.20.
D'Avanzo
D. C.
, Rung
R. D.
, and Dutton
R. W.
, “Spreading Resistance For Impurity Profiles
,” Tech. Rep. 5013-2, Stanford Electronics Laboratories, Stanford University
, Stanford, CA, 02
1977
.21.
Mazur
R. G.
and Gruber
G. A.
, Solid-State Technol.
, Vol. 24
(11
), p. 64, 1981
.22.
Ehrstein
J. R.
, “Spreading Resistance Measurements — An Overview
,” in Emerging Semiconductor Technology
, ASTM STP 960, Gupta
Dinesh C.
and Langer
P. H.
, Eds., American Society for Testing and Materials
, 1986
.23.
ASTM Standard
F674-80, part 43, American Society for Testing and Materials
, 1980
.24.
Ehrstein
J. R.
, Downing
R. G.
, Stallard
B. R.
, Simmons
D. S.
, and Fleming
R. F.
, “Comparison of Depth Profiling 10B in Silicon Using Spreading Resistance Profiling, Secondary-Ion Mass Spectroscopy, and Neutron Depth Profiling
,” in Semiconductor Processing
, ASTM STP 850, Gupta
Dinesh C.
, Ed., American Society for Testing and Materials
, 1984
.25.
Hu
S. M.
, J. Appl. Phys.
0021-8979, Vol. 53
, p. 1499, 1982
.26.
George
J.
, Banke
W.
, Varahramyan
K.
, and Slusser
G. J.
, “Analysis of Boron Profiles As Determined by Secondary-Ion Mass Spectroscopy, Spreading Resistance, and Process Modeling
,” in Emerging Semiconductor
ASTM STP 960, Gupta
Dinesh C.
and Langer
P. H.
, Eds., American Society for Testing and Materials
, 1986
.27.
Pinto
M. R.
, Rafferty
C. S.
, and Dutton
R. W.
, “Pisces II: Poisson and Continuity Equations Solver
,” Tech. Rep., Stanford Electronics Laboratories, Stanford University
, Stanford, CA, 09
1984
.28.
Gösele
U.
;, Private Communication.29.
Sze
S. M.
, VLSI Technology
, McGraw Hill
, New York
, 1983
.30.
Subrahmanyan
R.
, Ph.D. Thesis, Department of Electrical Engineering, Duke University
, Durham, North Carolina, 1988
.31.
Rozgonyi
G. A.
, Private Communication.32.
Sze
S. M.
, Semiconductor Devices — Physics and Technology
, John Wiley
, New York
, 1985
.
This content is only available via PDF.
You do not currently have access to this chapter.
Email alerts
Related Chapters
Analysis of Boron Profiles As Determined by Secondary Ion Mass Spectrometry, Spreading Resistance, and Process Modeling
Emerging Semiconductor Technology
High Resolution ToF-SIMS Imaging of Deuterium Permeation and Cracking in Duplex Stainless Steels
International Hydrogen Conference (IHC 2016): Materials Performance in Hydrogen Environments
In-situ Detection of Deuterium in Duplex Stainless Steels by Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)
International Hydrogen Conference (IHC 2012): Hydrogen-Materials Interactions
Role of Surface Analysis
Micro and Nanotribology
Related Articles
Stress–Strain Measurements in Vitrified Arteries Permeated With Synthetic Ice Modulators
J Biomech Eng (August,2015)
Reviewer's Recognition
J. Comput. Nonlinear Dynam (March,2021)
Oxygen Transport in YSZ∕LSM Composite Materials
J. Fuel Cell Sci. Technol (February,2005)