Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Dynamic Elastic Modulus Measurements in Materials
By
A Wolfenden
A Wolfenden
1
CSIRO
Division of Materials science and Technology Locked Bag 33
Clayton, Vic 3168
AUSTRALIA
on leave from Mechanical Engineering Department
Texas A & M University
?
College Station, TX 77843-3123
USA
Search for other works by this author on:
ISBN-10:
0-8031-1291-2
ISBN:
978-0-8031-1291-9
No. of Pages:
230
Publisher:
ASTM International
Publication date:
1990

Considering only cubic symmetry (three independent monocrystal elastic-stiffness coefficients, Cij), we review various models for converting the Cij to the effective macroscopic quasiisotropic and homogeneous elastic constants, usually taken as B, the bulk modulus, and G, the shear modulus. To test the models, we consider a typical metal: copper, which possesses a moderate Zener elastic-anisotropy ratio, 3.19, and which was measured by pulse-echo dynamic (MHz) methods. We find that the Hershey-Kröner-Eshelby, and equivalent, models work best. We ignore models that lack a physical basis. Using the H-K-E model, we calculate the effective polycrystalline elastic constants of twenty-five cubic elements.

1.
Voigt
,
W.
, “
Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper
,”
Annalen der Physik
 0003-3804, Vol.
38
,
1989
, pp. 573–587.
2.
Voigt
,
W.
,
Lehrbuch der Kristallphysik
,
Teubner
,
Leipzig
,
1928
, pp. 954–964.
3.
Reuss
,
A.
, “
Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle
,”
Zeitschrift für Anpewandte und Mathematik und Mechanik
 0044-2267, vol.
9
,
1929
, pp. 49–58.
4.
Hill
,
R.
, “
The Elastic Behavior of a Crystalline Aggregate
,”
Proceedings of the Physical Society
, vol.
A65
,
1952
, pp. 349–354.
5.
Hearmon
,
R.F.S.
, “
The Elastic Constants of Polycrystalline Aggregates
,” in Physics of the Solid State,
Academic
,
New York
,
1969
, pp. 401–414.
6.
Watt
,
J.P.
,
Davies
,
G.F.
, and
O'Connell
,
R.J.
, “
The Elastic Properties of Composite Materials
,”
Reviews of Geophysics and Space Physics
, vol.
14
,
1976
, pp. 541–563.
7.
Hashin
,
Z.
, “
Analysis of Composite Materials. A Survey
”,
Transactions, American Society of Mechanical Engineers: Journal of Applied Mechanics
, vol.
50
,
1983
, pp. 481–505.
8.
Nye
,
J.F.
,
Physical Properties of Crystals: Their Representation by Tensors and Matrices
,
Oxford
,
London
,
1960
, p. 134.
9.
Zener
,
C.
,
Elasticity and Anelasticity of Metals
,
U. Chicago Press
,
Chicago
,
1948
, p. 16.
10.
Kröner
,
E.
, “
Self-consistent scheme and graded disorder in polycrystal elasticity
,”
Journal of Physics F: Metal Physics
, vol.
8
,
1978
, pp. 2261–2267.
11.
Stokes
,
G.G.
,
Mathematical and Physical Papers, Volume 1
,
Cambridge U.P.
,
Cambridge
,
1880
, p. 120. Presented to Cambridge Philosophical Society in 1845.
12.
Hearmon
,
R.F.S.
,
An Introduction to Applied Anisotropic ELasticity
,
Oxford U.P.
,
London
,
1961
, p. 51.
13.
, pp. 9–14.
14.
Huber
,
A.
and
Schmid
,
E.
, “
Bestimmung der elastischen Eigenschaften quasiisotroper Vielkristalle durch Mittelung
,”
Helvetica Physica Acta
 0018-0238, vol.
7
,
1934
, pp. 620–627.
15.
Boas
,
W.
and
Schmid
,
E.
, “
Zur Berechnung physikalischer Konstanten quasiisotroper Vielkristalle
,”
Helvetica Physica Acta
 0018-0238, vol.
7
,
1934
, pp. 628–632.
16.
Boas
,
W.
, “
Zum elastischen Verhalten von Zinn-Ein- und Vielkristallen
,”
Helvetica Physica Acta
 0018-0238, vol.
7
,
1935
, pp. 878–883.
17.
Boas
,
W.
, “
Zur Berechnung des Torsionmoduls quasiisotroper Vielkristalle aus den Einkristallkonstanten
,”
Helvetica Physica Acta
 0018-0238, vol.
8
,
1935
, pp. 674–681.
18.
Boas
,
W.
, “
Die Berechnung von Eigenschaften technischer Werkstücke aus Einkristallkonstanten und Kristallitordnung
,”
Schweizer Archiv für Angewandte Wissenschaft und Technik
, vol.
1
, No.
12
,
1935
, pp. 257–264.
19.
Schmid
,
E.
and
Boas
,
W.
,
Kristallplastizität mit besonderer Berücksichtigung der Metalle
,
Springer
,
Berlin
,
1935
, section 81.
English translation:
Schmid
,
E.
and
Boas
,
W.
,
Plasticity of Crystals
,
Hughes
,
London
,
1950
.
20.
Boas
,
W.
,
Physics of Metals and Alloys
,
Melbourne U.P.
,
Victoria
,
1947
, pp. 94–100.
21.
Stadelmaier
,
H.H.
, “
Some Notes on the Relation Between the Elastic Moduli of Anisotropic Cristallites and Quasiisotropic Polycrystalline Aggregates
,”
Zeitschrift für Angewandte Mathematik und Physik
, vol.
6
,
1955
, pp. 246–252.
22.
Kröner
,
E.
, “
Berechnung der elastischen Konstanten der Vielkristalls aus den Konstanten des Einkristalls
,”
Zeitschrift für Physik
, vol.
151
,
1958
, p. 504–518.
23.
Eshelby
,
J.D.
, “
The determination of the elastic field of an ellipsoidal inclusion, and related problems
,”
Proceedings of the Royal Society (London)
 0370-1662, vol.
A241
,
1957
, pp. 376–388.
24.
Gairola
,
B.K.D.
and
Kröner
,
E.
, “
A Simple Fonnula for Calculating the Bounds and the Self-Consistent Value of the Shear Modulus of a Polycrystalline Aggregate of Cubic Crystals
,”
International Journal of Engineering Science
, vol.
19
,
1981
, pp. 865–869.
25.
Eshelby
,
J.D.
, “
Elastic Inclusions and Inhomogeneities
,” in Progress in Solid Mechanics, Volume
2
,
North-Holland
,
Amsterdam
, pp. 130–133.
26.
Hershey
,
A.V.
, “
The Elasticity of an Isotropic Aggregate of Anisotropic Cubic Crystals
,”
Journal of Applied Mechanics
 0021-8936, vol.
21
,
1954
, pp. 236–240.
27.
Hashin
,
Z.
and
Shtrikman
,
S.
, “
On Some Variational Principles in Anisotropic and Nonhomogeneous Elasticity
,”
Journal of the Mechanics and Physics of Solids
 0022-5096, vol.
10
,
1962
, pp. 335–342.
28.
Kröner
,
E.
and
Koch
,
H.
, “
Effective Properties of Disordered Materials
,”
SM Archives
, vol.
1
,
1976
, pp. 183–238.
29.
Gairola
,
B.K.D.
and
Ledbetter
,
H.M.
, “
Elastic constants of random polycrystalline graphite
,” nonpublished research,
NIST
,
1988
.
30.
Aleksandrov
,
K.S.
, “
Average Values of Tensor Quantities
,”
Soviet Physics-Doklady
 0038-5689, vol.
10
,
1966
, pp. 893–895.
31.
Leibfried
,
G.
, “
Versetzungen in anisotropem Material
,”
Zeitschrift für Physik
, vol.
135
,
1953
, pp. 23–43.
32.
Ledbetter
,
H.M.
and
Naimon
,
E.R.
, “
Relationship between single-crystal and polycrystal elastic constants
,”
Journal of Applied Physics
 0021-8979, vol.
45
,
1974
, pp. 66–69.
33.
Ledbetter
,
H.M.
, “
Sound velocities and elastic-constant averaging for polycrystalline copper
,”
Journal of Physics D: Applied Physics
 0022-3727, vol.
13
,
1980
, pp. 1879–1884.
34.
Simmons
,
G.
and
Wang
,
H.
,
Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook
,
MIT Press
,
Cambridge
,
1971
.
35.
Hearmon
,
R.F.S.
, in Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, Volumes
11
and
18
,
Springer
,
1979
.
36.
Dederichs
,
P.H.
and
Zeller
,
R.
, “
Variational treatment of the elastic constants of disordered materials
,”
Zeitschrift für Physik
, vol.
259
,
1973
, pp. 103–116.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal