Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Metal Matrix Composites: Testing, Analysis, and Failure Modes
By
WS Johnson
WS Johnson
1
NASA Langley Research Center
,
Hampton, VA
;
symposium chairman and editor
.
Search for other works by this author on:
ISBN-10:
0-8031-1270-X
ISBN:
978-0-8031-1270-4
No. of Pages:
295
Publisher:
ASTM International
Publication date:
1989

Continuum modeling of the elastic-plastic behavior of fibrous composites is concerned with predictions of the macroscopic behavior of a composite aggregate, which consists of an elastic-plastic metal matrix reinforced by unidirectionally aligned elastic fibers. Mechanical properties and volume fractions of the phases are assumed to be known; the objective is to predict the overall response of the composite under incrementally applied uniform macroscopic stresses or strains in terms of the phase properties, and of the geometry of the microstructure. This paper reviews some recent solutions of this problem. Those include micromechanical models that derive the overall response from uniform local fields, and also models that approximate the actual non-uniform local fields and arrive at upper and lower bound solutions. Recent experimental results pertaining to plastic behavior of fibrous composite materials are also discussed.

1.
Rashin
,
Z.
and
Shtrikman
,
S.
, “
A Variational Approach to the Theory of the Elastic Behavior of Po\ycrystak
,”
Journal of the Mechanics and Physics of Solids
, Vol.
10
,
1962
, pp. 343–352.
2.
Eashin
,
Z.
and
Rosen
,
B. W.
, “
The Elastic Moduli of Fiber-Reinforced Materials
,”
Journal of Applied Mechanics
, Vol.
31
,
1964
, pp. 223–232.
3.
Hill
,
R.
, “
Theory of Mechanical Properties of Fiber-Strengthened Materials-Ill, Self-Consistent Model
,”
Journal of the Mechanics and Physics of Solids
, Vol.
13
,
1965
, pp. 189–198.
4.
Budiansky
,
B.
, “
On the Elastic Moduli of Some Heterogeneous Materials
,”
Journal of the Mechanics and Physics of Solids
, Vol.
13
,
1965
, p. 223.
5.
Walpole
,
L. J.
, “
On the Overall Elastic Moduli of Composite Materials
,”
Journal of the Mechanics and Physics of Solids
, Vol.
17
,
1969
, p. 235.
6.
Dvorak
,
G. J.
and
Bahei-EI-Din
,
Y. A.
, “
Plasticity Analysis of Fibrous Composites
,”
Journal of Applied Mechanics
, Vol.
49
,
1982
, pp. 327–335.
7.
Aboudi
,
J.
, “
A Continuum Theory for Fiber-Reinforced Elastic-Viscoplastic Composites
,”
International Journal of Engineering Science
, Vol.
20
,
1982
, pp. 605–621.
8.
Aboudi
,
J.
, “
Elastoplasticity Theory for Composite Materials
,”
Solid Mechanics Archives
, Vol.
11
,
1986
, pp. 141–183.
9.
Accorsi
,
M. L.
and
Nemat-Nasser
,
S.
, “
Bounds on the Overall Elastic and Instantaneous Elastoplastic Moduli of Periodic Composites
,”
Mechanics of Materials
, Vol.
5
,
1986
, pp. 209–220.
10.
Dvorak
,
G. J.
and
Teply
,
J. L.
, “
Periodic Hexagonal Array Models for Plasticity Analysis of Composite Materials
,”
Plasticity Today: Modelling, Methods, and Applications
, W. Olszak Memorial Vol.
Sawczuk
A.
and
Blanchi
V.
, Eds.,
Elsevier
,
1985
, p. 623.
11.
Teply
,
J. L.
and
Dvorak
,
G. J.
, “
Bounds on Overall Instantaneous Properties of Elastic-Plastic Composites
,”
Journal of the Mechanics and Physics of Solids
, Vol.
36
,
1988
, pp. 29–58.
12.
Dvorak
,
G. J.
and
Bahei-EI-Din
,
Y. A.
, “
A Bimodal Plasticity Theory of Fibrous Composite Materials
,”
Acta Mechanica
, Vol.
69
,
1987
, pp. 219–241.
13.
Hill
,
R.
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
Journal of the Mechanics and Physics of Solids
, Vol.
11
,
1963
, pp. 357–372.
14.
Lin
,
Y. H.
,
Salinas
,
D.
, and
Ito
,
Y. M.
, “
Initial Yield Surface of a Unidirectionally Reinforced Composite
,”
Journal of Applied Mechanics
, Vol.
39
,
1972
, pp. 321–326.
15.
Dvorak
,
G. J.
,
Rao
,
M. S. M.
, and
Tarn
,
I. Q.
, “
Generalized Initial Yield Surfaces for Unidirectional Composites
,”
Journal of Applied Mechanics
, Vol.
41
,
1974
, pp. 249–253.
16.
Foye
,
R. L.
, “
Theoretical Post-Yielding Behavior of Composite Laminates,” Part I—Inelastic Micromechanics
,”
Journal of Composite Materials
, Vol.
7
,
1973
, pp. 178–193.
17.
Adams
,
D. F.
and
Crane
,
D. A.
, “
Combined Loading Micromechanical Analysis of a Unidirectional Composite
,”
Composites
, Vol.
15
,
1984
, pp. 181–191.
18.
Greenberg
,
H. J.
, “
Complementary Minimum Principles for an Elastic-Plastic Material
,”
Quarterly of Applied Mathematics
, Vol.
7
,
1949
, p. 85.
19.
Drucker
,
D. C.
, “
Variational Principles in the Mathematical Theory of Plasticity
,”
Calculus of Variations and Its Applications, Proceedings of Symposia in Applied Mathematics
, Vol.
VIII
,
Graves
L. M.
, Ed.,
McGraw-Hill
,
1958
, pp. 7–22.
20.
Hodge
,
P. G.
, “
Numerical Applications of Minimum Principles in Plasticity
,”
Engineering Plasticity
,
Heyman
J.
and
Leckie
,
F. A.
, Eds.,
Cambridge
,
University Press
,
1968
, p. 237.
21.
Martin
,
J. B.
,
Plasticity: Fundamentals and General Results
,
the MIT Press
,
Cambridge, Massachusetts
,
1975
.
22.
Martin
,
J. B.
, “
On the Kinematic Minimum Principle for the Rate Problem in Classical Plasticity
,”
Journal of the Mechanics and Physics of Solids
, Vol.
23
,
1975
, pp. 123–128.
23.
Nemat-Nasser
,
S.
,
Iwakuma
,
T.
, and
Hejazi
,
M.
, “
On Composites With Periodic Structure
,”
Mechanics of Materials
, Vol.
1
,
1982
, pp. 239–267.
24.
Zienkiewicz
,
O. C.
,
The Finite Element Method
, 3rd ed.,
McGraw-Hill
,
New York
,
1977
.
25.
Teply
,
J. L.
,
Periodic Hexagonal Array Models for Plasticity Analysis of Composite Materials
, Ph.D. dissertation,
University of Utah
, Salt Lake City, UT,
1984
.
26.
Wu
,
J. F.
,
Shephard
,
M. S.
,
Dvorak
,
G. J.
,
Bahei-El-Din
,
Y. A.
, and
Shah
,
R.
 5.
, “
Development of a Material Routine for Analysis of Metal Matrix Composite Structures With the ABAQUS Finite Element Program
,” Technical Report,
Office of Naval Research
, Contract N000014-85-K-0733,
06
1987
.
27.
Bahei-El-Din
,
Y. A.
,
Dvorak
,
G. J.
,
Lin
,
J.
,
Shah
,
R. S.
, and
Wu
,
J. F.
, “
Local Fields and Overall Response of Fibrous and Particulate Metal Matrix Composites
,” Final Technical Report,
ALCOA Laboratories
, Contract 379(52R)053(22L),
11
1987
.
28.
ABAQUS User's Manual
,
Hibbit, Karlsson, and Sorensen, Inc.
,
35 So. Angell St., Providence, RI 02906
,
07
1985
, Version 4.5(a).
29.
Eshelby
,
J. D.
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,”
Proceedings of the Royal Society (London)
 0370-1662, Vol.
A241
,
1957
, p. 376.
30.
Huang
,
W. C.
, “
Plastic Behavior of Some Composite Materials
,”
Journal of Composite Materials
, Vol.
15
,
1971
, pp. 320–338.
31.
Hutchinson
,
J. W.
, “
Elastic-Plastic Behavior of Polycrystalline Metals and Composites
,”
Proceedings of the Royal Society (London)
 0370-1662, Vol.
A319
,
1970
, pp. 247–272.
32.
Dvorak
,
G. J.
and
Bahei-El-Din
,
Y. A.
, “
Elastic-Plastic Behavior of Fibrous Composites
, ”
Journal of the Mechanics and Physics of Solids
, Vol.
27
,
1979
, pp. 51–72.
33.
Bahei-El-Din
,
Y. A.
and
Dvorak
,
G. J.
, “
Plasticity Analysis of Laminated Composite Plates
, ”
Journal of Applied Mechanics
, Vol.
49
,
1982
, pp. 740–746.
34.
Bahei-El-Din
,
Y. A.
,
Dvorak
,
G. J.
, and
Utku
,
S.
, “
Finite Element Analysis of Elastic-Plastic Fibrous Composite Structures
,”
Computers & Structures
, Vol.
13
,
1981
, pp. 321–330.
35.
Johnson
,
W. S.
,
Bigelow
,
C. A.
, and
Bahei-El-Din
,
Y. A.
, “
Experimental and Analytical Investigation of the Fracture Process of Boron/Aluminum Laminates Containing Notches
,” NASA Technical Paper 2187,
1983
.
36.
Dvorak
,
G. J.
,
Bahei-El-Din
,
Y. A.
,
Macheret
,
Y.
, and
Liu
,
C. H.
, “
An Experimental Study of Elastic-Plastic Behavior of a Fibrous Boron-Aluminum Composite
,”
Journal of the Mechanics and Physics of Solids
, Vol.
36
,
1988
, pp. 655–687.
37.
Phillips
,
A.
,
Liu
,
C. S.
, and
Justusson
,
J. W.
, “
An Experimental Investigation of Yield Surfaces at Elevated Temperatures
,”
Acta Mechanica
, Vol.
14
,
1972
, pp. 119–146.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal