Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: Eighth International Symposium
By
CM Eucken
CM Eucken
1
Teledyne Wah Chang Albany
,
Albany, OR 97321-036
;
symposium chairman and editor
.
Search for other works by this author on:
LFP Van Swam
LFP Van Swam
2
Advanced Nuclear Fuels Corp.
?
Richland, WA 99352-0130
;
symposium chairman and editor
.
Search for other works by this author on:
ISBN-10:
0-8031-1199-1
ISBN:
978-0-8031-1199-8
No. of Pages:
791
Publisher:
ASTM International
Publication date:
1989

The effects of hydride morphology on the axial fracture toughness of cold-worked Zr-2.5Nb pressure tube material have been determined between room temperature and 240°C. Tests were performed on small compact tension specimens machined from samples of material prepared with different morphologies and hydrogen concentrations. The morphologies were characterized by a parameter referrred to as the hydride continuity coefficient (HCC), which provides a measure of the extent to which hydrides are oriented in the axial-radial plane of the pressure tube. Hydrides in this orientation are known to be detrimental to the fracture properties of the tube. Fracture toughness was characterized by a J-R curve technique, from which it is possible to estimate the maximum stable size of a through-wall axial crack for typical reactor operating conditions. Material with HCC values greater than 0.5 exhibited low toughness from room temperature to 240°C, at which temperature there was an abrupt transition to an upper shelf toughness value. As HCC decreases, the transition to upper shelf toughness occurs more gradually and is complete at a lower temperature.

1.
Davies
,
P. H.
and
Stearns
,
C. P.
, “
Fracture Toughness Testing of Zircaloy-2 Pressure Tube Material with Radial Hydrides Using Direct Current Potential Drop
,”
Fracture Mechanics: 17th Volume
, STP 905,
Underwood
J. H.
,
Chait
R.
,
Smith
C. W.
,
Wilhem
D. P.
, and
Newman
J. C.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1986
, pp. 379cc400.
2.
Davies
,
P. H.
,
Leger
,
M.
, and
Shek
,
G. K.
, “
Final Report: Reactivation of Orenda Burst Test Rig and Initial Testing of Two Zr-2.5wt%Nb Pressure Tubes
,” Ontario Hydro Research Division Report 83-265-K,
16
08
1983
.
3.
Coleman
,
C. E.
,
Cheadle
,
B. A.
,
Ambler
,
J. F. R.
,
Lichtenberger
,
P. C.
, and
Eadie
,
R. L.
, “
Minimizing Hydride Cracking in Zirconium Alloys
,”
Canadian Metallurgical Quarterly
, Vol.
24
, No.
3
,
1985
, pp. 245–250.
4.
Simpson
,
L. A.
and
Chow
,
C. K.
, “
Effect of Metallurgical Variables and Temperature on the Fracture Toughness of Zirconium Alloy Pressure Tubes
,”
Zirconium in the Nuclear Industry: Seventh International Symposium
, STP 939,
Adamson
R. B.
and
Van Swam
L. F. P.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1987
, pp. 579–596.
5.
Leger
,
M.
,
Shek
,
G. K.
,
Donner
,
A.
, and
Vesely
,
P. G.
, “
OHRD Metallurgical Investigation of Pressure Tubes Removed from Pickering ‘B’ Unit 8
,” Ontario Hydro Research Division Report 85-293-K,
08
10
1985
.
6.
Julien
,
M.
,
Donner
,
A.
, and
Leger
,
M.
, “
The Occurrence of Hydride Depleted Zones in Zr-2.5wt%Nb Pressure Tube Material
,” Ontario Hydro Research Division Report 79-520-K,
05
12
1979
.
7.
Bell
,
L. G.
and
Duncan
,
R. G.
, Atomic Energy of Canada Report AECL-5110,
Whiteshell Nuclear Research Establishment
, Pinawa, Manitoba, Canada,
06
1975
.
8.
Westlake
,
D. G.
and
Ockers
,
S. T.
, “
Hydrogen Supercharging During Thermal Cycling of Zir-conium
,”
Journal of Nuclear Materials
, Vol.
37
,
1970
, pp. 236–242.
9.
Chow
,
C. K.
and
Simpson
,
L. A.
, “
Determination of the Fracture Toughness of Irradiated Reactor Pressure Tubes Using Curved Compact Specimens
,”
Fracture Mechanics: Eighteenth Symposium
, STP 945,
Read
D. T.
and
Reed
R. P.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1988
, pp. 419–439.
10.
Simpson
,
L. A.
and
Clarke
,
C. F.
, “
An Elastic-Plastic R-Curve Description of Fracture in Zr-2.5Nb Pressure Tube Alloy
,”
Elastic-Plastic Fracture
, STP 668,
Landes
J. D.
,
Begley
J. A.
, and
Clarke
G. A.
, Eds.,
American Society for Testing and Materials
,
1979
, pp. 643–662.
11.
Ells
,
C. E.
,
Cheadle
,
B. A.
,
Coleman
,
C. E.
, and
Van der Kuur
,
J. H.
, “
The Decomposition of Hydrides in Zirconium Alloys
,”
Proceedings of Third International Congress on Hydrogen and Materials
,
Paris
, 7–11 June 1982 (AECL-7711).
12.
Simpson
,
L. A.
, “
The Application of Ductile-Fracture Analysis to Predictions of Pressure-Tube Failure
,” Atomic Energy of Canada Limited Report No. AECL-6805,
Whiteshell Nuclear Research Establishment
, Pinawa, Manitoba, Canada,
08
1981
.
13.
Kiefner
,
J. F
,
Maxey
,
W. A.
,
Eiber
,
R. J.
, and
Duffy
,
A. R.
, “
Failure Stress Levels of Flaws in Pressurized Cylinders
,” Progress in Flaw Growth and Fracture Toughness Testing,
Kaufman
J. G.
, Ed., STP 536,
American Society for Testing and Materials
,
Philadelphia
,
1973
, pp. 461–481.
14.
Simpson
,
L. A.
,
Metallurgical Transactions
, Vol.
12A
,
1981
, pp. 2113–2124.
15.
Puls
,
M. P.
,
Metallurgical Transactions
, Vol.
19A
,
1988
, pp. 1507–1522.
16.
Barraclough
,
K. G.
and
Beevers
,
C. J.
,
Journal of Materials Science
 0022-2461, Vol.
4
,
1969
, p. 518.
17.
Simpson
,
L. A.
and
Cann
,
C. D.
,
Journal of Nuclear Materials
, Vol.
87
,
1979
.
18.
Simpson
,
L. A.
,
Ellis
,
R. B.
,
Stark
,
D. J.
, and
Shillinglaw
,
A. J.
, “
The Effect of Irradiation Temperature on the Fracture Toughness of Cold-Worked Zr-2.5wt%Nb
,” Atomic Energy of Can-ada Limited Report AECL-8368,
Whiteshell Nuclear Research Establishment
, Pinawa, Manitoba, Canada,
09
1984
.
19.
Kumar
,
V.
,
German
,
M. D.
, and
Shih
,
C. F
, “
An Engineering Approach for Elastic-Plastic Fracture Analysis
,” Topical Report NP-1931,
Electric Power Research Institute
, Palo Alto, CA,
07
1981
.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal