Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Fracture Mechanics: Perspectives and Directions (Twentieth Symposium)
By
RP Wei
RP Wei
1
Lehigh University
,
Bethlehem, PA
.
Search for other works by this author on:
RP Gangloff
RP Gangloff
2
University of Virginia
,
Charlottesville, VA
.
Search for other works by this author on:
ISBN-10:
0-8031-1250-5
ISBN:
978-0-8031-1250-6
No. of Pages:
709
Publisher:
ASTM International
Publication date:
1989

A brief historical and technical perspective precedes emphasizing the need to understand some of the fundamental characteristics of fracture. What the state of the art was two decades ago is no longer adequate in the era of modern technology. Observed mechanisms of failure at the atomic, microscopic, and macroscopic scale will continue to be elusive if the combined interaction of space/time/temperature interaction is not considered. The resolution of analysis, whether analytical or experimental or both, needs to be clearly identified with reference to local and global failure. Microdamage versus macrofracture is discussed in connection with the exchange of surface and volume energy, which is inherent in the material damage process. This gives rise to dilatation/distortion associated with cooling/heating at the prospective sites of failure initiation. Analytical predictions together with experimental results are presented for the compact tension and central crack specimens.

1.
Linear Fracture Mechanics
,
Sih
G. C.
,
Wei
R. P.
and
Erdogan
F.
, Eds.,
Envo Publishing Co.
,
Bethlehem, PA
,
1974
.
2.
Pellini
,
W. S.
, “
Principles of Structural Integrity Technology
,”
Office of Naval Research
,
Arlington, VA
,
1976
.
3.
Plane-Strain Crack Toughness Testing of High-Strength Metallic Materials
, ASTM STP 410,
Brown
,
W. F.
 Jr.
and
Srawley
J. E.
, Eds.,
American Society for Testing and Materials
,
Philadelphia
,
1966
.
4.
Sih
,
G. C.
and
Tzou
,
D. Y.
, “
Mechanics of Nonlinear Crack Growth: Effects of Specimen Size and Loading Step
,”
Proceedings on Modelling Problems in Crack Tip Mechanics
,
Pindera
J. T.
, Ed.,
Martinus Nijhoff Publishers
,
Amsterdam, the Netherlands
,
1984
, pp. 155–169.
5.
Sih
,
G. C.
and
Chen
,
C.
, “
Non-Self-Similar Crack Growth in an Elastic-Plastic Finite Thickness Plate
,”
Journal of Theoretical and Applied Fracture Mechanics
, Vol.
3
, No.
2
,
1985
, pp. 125–139.
6.
Wells
,
A. A.
, “
Application of Fracture Mechanics at and Beyond General Yielding
,”
British Welding Journal
, Vol.
10
,
1963
, pp. 563–569.
7.
Begley
,
J. A.
and
Landes
,
J. E.
, “
The J Integral as a Fracture Criterion
,”
Fracture Toughness
, ASTM STP 514,
American Society for Testing and Materials
,
Philadelphia
,
1972
, pp. 1–20.
8.
Bucci
,
R. J.
,
Paris
,
P. C.
,
Landes
,
J. E.
, and
Rice
,
J. R.
, “
J Integral Estimation Procedure
,”
Fracture Toughness
, ASTM STP 514,
American Society for Testing and Materials
,
Philadelphia
,
1972
, pp. 40–69.
9.
Shih
,
C. F.
,
DeLorenzi
,
H. G.
, and
Andrews
,
W. R.
, “
Studies on Crack Initiation and Stable Crack Growth
,”
Elastic-Plastic Fracture Mechanics
, ASTM STP 668,
American Society for Testing and Materials
,
Philadelphia
,
1979
, pp. 65–120.
10.
Bernstein
,
H. L.
, “
A Study of J-Integral Method using Polycarbonate
,” AFWAL-TR-82-4080,
Air Force Wright Aeronautical Laboratories
, Wright-Patterson Air Force Base, OH,
08
1982
.
11.
Sih
,
G. C.
and
Tzou
,
D. Y.
, “
Crack Extension Resistance of Polycarbonate Material
,”
Journal of Theoretical and Applied Fracture Mechanics
, Vol.
2
, No.
3
,
1984
, pp. 220–234.
12.
Sih
,
G. C.
, and
Tzou
,
D. Y.
, “
Dynamic Fracture Rate of Charpy V-Notch Specimen
,”
Journal of Theoretical and Applied Fracture Mechanics
, Vol.
5
, No.
3
,
1986
, pp. 189–203.
13.
Proceedings of Workshop on Dynamic Fracture
,
California Institute of Technology
,
Pasadena, CA
,
02
1983
.
14.
Sih
,
G. C.
, “
Fracture Mechanics of Engineering Structural Components
,”
Fracture Mechanics Methodology
,
Sih
G. C.
and
Faria
L.
, Eds.,
Martinus Nijhoff Publishers
,
Amsterdam, the Netherlands
,
1984
, pp. 35–101.
15.
Sih
,
G. C.
, “
Outlook on Fracture Mechanics
,”
The Mechanism of Fracture
,
Goel
V. S.
, Ed., Proceedings of the Annual American Society of Metal Conference,
Salt Lake City, UT
, 2–6 Dec. 1985, pp. 1–16.
16.
Paris
,
P. C.
, “
The Growth of Cracks Due to Variations in Load
,” Ph.D. dissertation,
Department of Mechanics, Lehigh University
, Bethlehem, PA,
1962
.
17.
Wei
,
R. P.
, “
Contribution of Fracture Mechanics to Subcritical Crack Grwoth Studies
,”
Linear Fracture Mechanics
,
Sih
G. C.
,
Wei
R. P.
, and
Erdogan
F.
, Eds.,
Envo Publishing Co.
,
Bethlehem, PA
,
1974
, pp. 287–302.
18.
Vecchio
,
R. S.
, and
Hertzberg
,
R. W.
, “
A Rationale for the Apparent Anomalous Growth Behavior of Short Fatigue Cracks
,”
Journal of Engineering Fracture Mechanics
, Vol.
22
, No.
6
,
1985
, pp. 1049–1060.
19.
Sih
,
G. C.
and
Tzou
,
D. Y.
, “
Heating Preceded by Cooling Ahead of Crack: Macrodamage Free Zone
,”
Journal of Theoretical and Applied Fracture Mechanics
, Vol.
6
, No.
2
,
1986
, pp. 103–111.
20.
Ohr
,
S. M.
,
Horton
,
J. A.
, and
Chung
,
S. J.
, “
Direct Observations of Crack Tip Dislocation Behavior During Tensile and Cyclic Deformation
,”
Defects, Fracture and Fatigue
,
Sih
G. C.
and
Provan
J. W.
, Eds.,
Martinus Nijhoff Publishers
,
Amsterdam, the Netherlands
,
1982
, pp. 3–15.
21.
Griffith
,
A. A.
, “
The Theory of Rupture
,”
Proceedings
, 1st International Congress for Applied Mechanics Delft,
the Netherlands
,
1924
, pp. 55–63.
22.
Irwin
,
G. R.
, “
Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate
,”
Journal of Applied Mechanics
 0021-8936, Vol.
24
,
1957
, pp. 361–364.
23.
Orowan
,
E.
, “
Energy Criteria of Fracture
,”
Welding Research Supplement
, Vol.
34
,
1955
, pp. 157s–160s.
24.
Sih
,
G. C.
, “
Some Basic Problems in Fracture Mechanics and New Concepts
,”
International Journal of Engineering Fracture Mechanics
, Vol.
5
, No.
2
,
1973
, pp. 365–377.
25.
Sih
,
G. C.
, “
Introductory Chapters of Vol. I to Vol. VII
,”
Mechanics of Fracture
,
Sih
G. C.
, Ed.,
Martinus Nijhoff Publishers
,
Amsterdam, the Netherlands
, 1972–1982.
26.
Sih
,
G. C.
, “
Mechanics and Physics of Energy Density and Rate of Change of Volume with Surface
,”
Journal of Theoretical and Applied Fracture Mechanics
, Vol.
4
, No.
3
,
1985
, pp. 157–173.
27.
Hutchinson
,
J. W.
, “
Plastic Stress and Strain Fields at a Crack Tip
,”
Journal of the Mechanics and Physics of Solids
, Vol.
16
,
1968
, pp. 337–342.
28.
Hilton
,
P. D.
and
Hutchinson
,
J. W.
, “
Plastic Intensity Factors for Cracked Plates
,”
Journal of Engineering Fracture Mechanics
, Vol.
3
,
1971
, pp. 435–451.
29.
Sih
,
G. C.
,
Tzou
,
D. Y.
, and
Michopoulos
,
J. G.
, “
Secondary Temperature Fluctuation in Cracked 1020 Steel Specimen Loaded Monotonically
,”
Journal of Theoretical and Applied Fracture Mechanics
, Vol.
7
, No.
2
,
1987
, pp. 79–87.
30.
Cernocky
,
E. P.
and
Krempl
,
E.
, “
A Theory of Thermoviscoplasticity for Uniaxial Mechanical and Thermal Loading
,”
Journal de Mechanique Appliquee
, Vol.
5
, No.
3
,
1981
, pp. 293–321.
31.
Tzou
,
D. Y.
and
Sih
,
G. C.
, “
Thermal/Mechanical Interaction of Subcritical Crack Growth in Tensile Specimens
,”
Journal of Theoretical and Applied Fracture Mechanisms
, Vol.
10
, No.
1
, pp. 59–72.
32.
Sih
,
G. C.
, “
Thermal/Mechanical Interaction Associated with the Micromechanisms of Material Behavior
,” Institute of Fracture and Solid Mechanics Technical Report,
Lehigh University
, Bethlehem, PA,
02
1987
.
33.
Sih
,
G. C.
and
Chao
,
C. K.
, “
Scaling of Size/Time/Temperature Associated with Damage of Uniaxial Tensile and Compressive Specimens
,”
Journal of Theoretical and Applied Mechanisms
, forthcoming.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal